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§0. Introduction

In this paper, we continue our development of the theory of the Hodge-Arakelov Com-
parison Isomorphism of [HAT]. Our main result concerns the invertibility of the coefficients
of the Fourier transform of an algebraic theta function. Using this result, we obtain a modi-
fied version of the Hodge-Arakelov Comparison Isomorphism of [HAT], which we refer to as
the Theta-Convoluted Comparison Isomorphism. The significance of this modified version
is that the principle obstruction to the application of the theory of [HAT] to diophantine
geometry — namely, the Gaussian poles — partially vanishes in the theta-convoluted con-
text. Thus, the results of this paper bring the theory of [HAT] one step closer to possible
application to diophantine geometry.

Perhaps the simplest way to explain the main idea of the present paper is the following:
The theory of [HAT] may be thought of as a sort of discrete, scheme-theoretic version of
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the theory of the classical Gaussian e−x
2

(on the real line) and its derivatives (cf. [HAT],
Introduction, §2). The reason for the appearance of the “Gaussian poles” — which, as
remarked above, constitute the principle obstruction to the application of the theory of
[HAT] to diophantine geometry — is that, if, for instance, P (−) is a polynomial with
constant coefficients, then, at its most fundamental combinatorial level, the “comparison
isomorphism” of [HAT] may be thought of as the mapping

P (−) �→ P (
∂

∂x
) e−x

2
= P (−2x) · e−x2

from a certain space of polynomials — which constitutes the de Rham side of the com-
parison isomorphism — to a certain space of set-theoretic functions — which constitutes
the étale side of the comparison isomorphism. Roughly speaking, in order to make this
morphism into an isomorphism, it is necessary to eliminate the extra factor of e−x

2
on the

right. Once this extra factor is eliminated, the mapping P (−) �→ P (−2x) is “manifestly”
an isomorphism.

The approach of [HAT] to making this mapping into an isomorphism is to introduce
poles into the de Rham side of the morphism (i.e., the “Gaussian poles”), which amounts
(relative to the above discussion) to artificially tensoring the left-hand side of the morphism
with the “symbol” ex

2
, which then is to map to the “function” ex

2
. Once this operation

is performed, the right-hand side becomes P (−2x)e−x
2 · ex2

= P (−2x), so we get an
isomorphism P (−) �→ P (−2x) as desired.

The problem with this approach of [HAT] is that for diophantine applications, one
wishes to leave the de Rham side of the comparison isomorphism untouched. On the other
hand, although one wishes to modify the étale side, one wants to modify it in such a way
that the resulting modified étale side still admits a natural Galois action, which is necessary
in order to construct the arithmetic Kodaira-Spencer morphism (cf. [HAT], Chapter IX,
§3, as well as Remark 2 following Theorem 10.1 in the present paper).

In the present paper, the approach that we take may be explained in terms of the
above discussion as follows: Instead of modifying the de Rham side of the comparison
morphism, we modify the étale side by “tensoring it with the inverse of the line bundle
defined by the image on the étale side of the element ‘1’ (on the de Rham side).” Of course
this image is simply e−x

2
, so dividing by this image amounts to multiplying by ex

2
on the

étale side, thus giving us the desired isomorphism P (−) �→ P (−2x).

Of course, in the theory of [HAT] and the present paper, we are not working literally
with the Gaussian or even classical theta functions, but rather their discrete algebraic
analogues. Thus, it is not surprising that many of the technical computations of this
paper involve certain discrete analogues of the classical Gaussian on the real line (cf. §2).
Since the correspondence between theta functions and Gaussian is, in essence, that the
Gaussian represents the Fourier transform of a theta function, multiplying by a Gaussian
corresponds, at the level of theta functions, to the operation of convolution. Thus, the
operation which we wish to perform (cf. the preceding paragraph) on the étale side of the
comparison isomorphism is to apply the inverse of convolution with the theta function. In
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the present paper, we refer to the operation of convolution with the theta function as the
“theta convolution.” Thus, the key technical result that is necessary in order to realize
the philosophical idea explained above is a result concerning the invertibility of the theta
convolution. Put another way, since our theta functions (in the theory of [HAT] and the
present paper) are the algebraic theta functions of Mumford (cf. [Mumf1,2,3]), we thus see
that the result that we need is a result concerning the invertibility of the coefficients of the
Fourier transform of certain algebraic theta functions.

This result is the first main result of this paper (Theorem 9.1). We refer to §9 for
explicit technical details concerning its statement. In a word, this result states that the
coefficients of the Fourier transform of certain algebraic theta functions are invertible in
characteristic 0 away from the divisor at infinity (i.e., the locus where the elliptic curve in
question degenerates). Moreover, in mixed characteristic and near the divisor at infinity,
we analyze explicitly the extent to which these coefficients fail to be invertible. In fact,
the proof of this result proceeds precisely by comparing the degree of the line bundle (on
the moduli stack of elliptic curves) of which the norm of the Fourier transform (i.e., the
product of its coefficients) is a section to the degree of the zero locus of this norm in
a neighborhood of the divisor at infinity. A rather complicated calculation reveals that
these two degrees coincide. This coincidence of degrees implies that the norm is therefore
invertible (in characteristic 0) away from the divisor at infinity. Finally, we apply our
first main result to prove our second main result, i.e., the theta-convoluted comparison
isomorphism (Theorem 10.1).

Before proceeding, we would like to explain several ways to think about the contents
of this paper. First of all, the fact that the coefficients of the Fourier transform of certain
algebraic theta functions are invertible away from the divisor at infinity appears (to the
knowledge of the author) to be new (i.e., it does not seem to appear in the classical theory
of theta functions). Thus, one way to interpret Theorem 9.1 is as a result which implies
the existence of certain interesting, new modular units. It would be interesting to see if
this point of view can be pursued further (cf. the Remark following Theorem 9.1).

Another way to think about the contents of this paper is the following. The classical
representation of the Fourier expansion of a theta function — i.e., the representation which
states that the Fourier coefficients are essentially a “Gaussian” — arises from the Fourier
expansion of the restriction of a theta function to a certain particular cycle (or copy of the
circle S1) on the elliptic curve E in question. More explicitly, if one thinks of this elliptic
curve E as being

E = C×/qZ

then this special cycle is the image of the natural copy of S1 ⊆ C×. In the present
context, we are considering discrete analogues of this classical complex theory, so instead
of working with this S1, we work with its d-torsion points (for some fixed positive integer
d), i.e., μd ⊆ S1 ⊆ C×.

On the other hand, in order to obtain a theory valid over the entire moduli stack of
elliptic curves, we must consider Fourier expansions of theta functions restricted not just
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to this special cyclic subgroup of order d, i.e., μd ⊆ E, (with respect to which the Fourier
expansion is particularly simply and easy to understand), but rather with respect to an
arbitrary cyclic subgroup of order d. Viewed from the classical complex theory, considering
Fourier expansions arising from more general restriction subgroups amounts to considering
the functional equation of the theta function. In the classical complex theory, Gauss sums
arise naturally in the functional equation of the theta function. Thus, it is not surprising
that Gauss sums (and, in particular, their invertibility) also play an important role in the
theory of the present paper.

In fact, returning to the theory of the Gaussian on the real line, one may recall that
one “important number” that arises in this theory is the integral of the Gaussian (over the
real line). This integral is (roughly speaking)

√
π. On the other hand, in the theory of this

paper, Gaussians correspond to “discrete Gaussians” (cf. §2), so integrals of Gaussians
correspond to “Gauss sums.” That is to say, Gauss sums may be thought of as a sort of
discrete analogue of

√
π. Thus, the appearance of Gauss sums in the theory of this paper

is also natural from the point of view of the above discussion of the “main idea” involving
Gaussians.

Indeed, this discussion of discrete analogues of Gaussians and
√
π leads one to suspect

that there is also a natural p-adic analogue of the theory of this paper involving the p-adic
ring of periods Bcrys. Since this ring of periods contains a certain copy of Zp(1) which may
be thought of as a “p-adic analogue of π,” it is thus natural to suspect that in a p-adic
analogue of the theory of this paper some “square root of this copy of Zp(1)” — and, in
particular, its invertibility — should play an analogously important role to the role played
by the invertibility of Gauss sums in the present paper. We hope to develop such a p-adic
theory in a future paper (cf. also [HAT], Introduction, §5.1).

Finally, we explain the contents of the various §’s of this paper. In §1, we define and
discuss the elementary properties of the Fourier transform of a finite flat group scheme.
In §2, we discuss the “discrete Gaussians” and their “integrals” (Gauss sums) that arise
in the computations of this paper. In §3, we formalize the necessary technical details
concerning the Fourier transform of an algebraic theta function. This formalization results
in the appearance of various degrees of line bundles and divisors on the moduli stack of
elliptic curves which were computed in [HAT]; in §3, we review these computations. In §4,
5, we estimate the degree of vanishing of the norm of the Fourier transform of an algebraic
theta function in a neighborhood of infinity. It turns out that these computations differ
somewhat depending on the “position” of certain auxiliary torsion subgroups of the elliptic
curve that are necessary in order to define our Fourier transform. Roughly speaking, the
necesssary computations may be separated into two cases or parts, depending on the
position of these auxiliary torsion subgroups. The two cases constitute, respectively, the
content of §4, 5. In §6, we investigate when the norm of the Fourier transform is generically
zero. In §7, we perform certain complicated but elementary computations that we use in
§8. These computations are at the level of high-school mathematics and, in particular,
have nothing to do with arithmetic geometry. In §8, we combine the estimates of §4, 5,
with the computations of §7 to show the important “coincidence of degrees” discussed
above. In §9, we record the consequences of this coincidence of degrees, i.e., our first main
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result (Theorem 9.1). In §10, we apply Theorem 9.1 to construct the theta-convoluted
comparison isomorphism (whose realization was, as explained above, the main motivation
for the theory of this paper).

§1. The Scheme-Theoretic Fourier Transform

In this §, we extend the well-known theory of Fourier analysis on finite abelian groups
to its “schematic analogue,” Fourier analysis on finite, flat commutative group schemes.

Let S be a scheme. Let

G→ S

be a finite, flat commutative group scheme over S. Write Ĝ→ S for the Cartier dual of G
([Shz], §4). Thus, if T is an S-scheme, the T -valued points of Ĝ are the homomorphisms
GT (def= G×S T ) → (Gm)T .

Let f ∈ Γ(G,OG) be a function on G. Then we define its Fourier transform f̂ ∈
Γ(Ĝ,O

Ĝ
) as follows: The value of f̂ on a T -valued point γ̂ ∈ Ĝ(T ) (where T is an S-

scheme) is given by:

f̂(γ̂) def=
∫
GT /T

f · (γ̂)−1

Here, we think of γ̂ as an (invertible) function on GT , and denote by “
∫
GT /T

” the trace
morphism OGT → OT (which is well-defined since G → S is finite and flat). Since this
definition is functorial in T , we thus obtain a well-defined element f̂ ∈ Γ(Ĝ,O

Ĝ
). This

completes the definition of the Fourier transform of f . In the following, we shall also write

FG(f)

(or F(f), when the choice of G is clear) for f̂ .

Next, let f, g ∈ Γ(G,OG) be two functions on G. Then in addition to the usual product
f · g ∈ Γ(G,OG), we also have the convolution (product)

f ∗ g ∈ Γ(G,OG)

of f, g, defined by:

(f ∗ g)(γ) def=
∫
γ′∈G

f(γ · (γ′)−1) · g(γ′)
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(for T -valued points γ ∈ G(T )). Finally, let us write I(f) for the function obtained by
pulling f back via the inversion morphism [−1] : G→ G on G.

Proposition 1.1. Suppose that G→ S is of constant rank |G|, and that the integer |G|
is a nonzero divisor on S. Then we have:

(i.) |G| · I(f) = F
Ĝ

(FG(f)).

(ii.) |G| · FG(f · g) = FG(f) ∗ FG(g).

(iii.) FG(f ∗ g) = FG(f) · FG(g). for any f ∈ Γ(G,OG).

Proof. Since |G| is a nonzero divisor on S, we may assume without loss of generality that
|G| is invertible on S, and hence that G → S is étale ([Shz], §4, Corollary 3). Then by
replacing S by a finite étale cover of S, we may assume that G→ S is of the form Γ × S,
where Γ is a finite abelian group (in the category of sets). In this case, the stated identities
are well-known (cf., e.g., [DyMc], §4.5). ©

Now let us suppose that we have an exact sequence

0 → H → G→ K → 0

of finite, flat commutative group schemes over S. Taking Cartier duals, we obtain an exact
sequence

0 → K̂ → Ĝ→ Ĥ → 0

If f ∈ Γ(K,OK) is a function on K, then by pull-back, we obtain a function f |G ∈
Γ(G,OG), which we also denote by ResGK(f).

Now suppose that K → S is of constant rank |K|, and that the integer |K| is a nonzero
divisor on S. Then it follows that over SK

def= S[|K|−1], K|SK → SK is étale, hence that
H|SK is open and closed in GSK . Now suppose that f ∈ Γ(H,OH ) is a function on H,
and that f̃ ∈ Γ(G,OG) is a function on G such that f̃ |H = f , and, moreover, that f̃ |SK

vanishes on the open and closed subscheme GSK \HSK ⊆ GSK . Then we shall write

IndGH(f)

for f̃ . Thus, IndGH(f) is the result of “extending f by zero” to a function on G. Note that
such an f̃ is necessarily unique (since SK is schematically dense in S, and f̃ is uniquely
determined on HSK and GSK \HSK ).
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Proposition 1.2. Suppose that G→ S is of constant rank |G|, and that the integer |G|
is a nonzero divisor on S. Then:

(i.) For any f ∈ Γ(K,OK), we have: FG(ResGK(f)) = |H| · IndĜ
K̂

(FK(f)).

(ii.) For any f ∈ Γ(H,OH ) such that IndGH(f) exists, we have: FG(IndGH(f)) =

ResĜ
Ĥ

(FH(f)).

(iii.) In particular, if 1G is the constant function 1 on G, and δ0,G is the “delta
distribution at the origin” (i.e., the function – defined after one inverts |G| – which is 1 at
the origin and 0 elsewhere), then FG(1G) = |G| · δ

0,Ĝ
, and FG(δ0,G) = 1

Ĝ
.

Proof. Just as in the proof of Proposition 1.1, it suffices to verify the result under the
assumption that G is of the form Γ×S, where Γ is a finite abelian group of order invertible
on S. But in this case, the result is well-known (cf., e.g., [DyMc], §4.5). ©

§2. Discrete Gaussians and Gauss Sums

One of the key fundamental results in classical Fourier analysis on the real line is
that the Fourier transform of a Gaussian is (up to a factor which typically involves

√
π)

a Gaussian. In this §, we examine the discrete analogue of this phenomenon. Here,
the discrete analogue of a classical Gaussian is a “discrete Gaussian,” while the discrete
analogue of the factor that appears when one applies the Fourier transform is a Gauss
sum.

We maintain the notations of §1. Here, we assume further that the group scheme G
is (noncanonically) isomorphic to Z/NZ, for some positive integer N which is invertible
on S. In the following, we assume that some particular isomorphism

G ∼= (Z/NZ) × S

has been chosen. Note that the choice of such an isomorphism endows G with a structure
of “ring scheme” (i.e., arising from the ring structure of Z/NZ). In particular, if γ ∈ G(S),
then we shall write (for i ∈ Z≥1) i·γ (respectively, γi) for the result of adding (respectively,
multiplying) — i.e., relative to this ring scheme structure — γ to (respectively, by) itself
a total of i times. Often, by abuse of notation, we shall simply write γ ∈ G for the N
elements of G(S) defined by Z/NZ. Let

χ : G→ Gm

be a faithful character of the group scheme G. Then consider the function
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ψ : G→ Gm

defined by ψ(γ) def= χ(γ2).

Definition 2.1. Such a function ψ on G (defined for some χ as above) will be referred
to as a discrete Gaussian (on G).

In the following, we would like to consider the Fourier transform of a discrete Gaussian
and show that this Fourier transform is essentially another discrete Gaussian (times a
certain Gauss sum).

Let us first observe that since χ is faithful, the characters of G are all of the form
γ �→ χ(c · γ), for some c ∈ Z/NZ. Let us then compute the Fourier coefficient of ψ for the
character χc corresponding to an even c = 2c′ (where c′ ∈ Z/NZ):

∫
γ∈G

ψ(γ) · χ(−c · γ) =
∫
γ∈G

χ(γ2 − 2c′ · γ)

= χ(−(c′)2) ·
∫
γ∈G

χ((γ − c′)2)

= χ(−(c′)2) ·
∫
γ∈G

χ(γ2)

Write

G(χ,N) def=
∫
γ∈G

χ(γ2)

for the Gauss sum defined by χ. Then the above calculation shows in particular that for
N odd (in which case all c may be written as c = 2c′), the Fourier transform F(ψ) is the
function χc �→ G(χ,N) ·χ(−1

4 ·c2). This function is clearly a constant (= G(χ,N)) multiple
of a discrete Gaussian.

Next, we consider the more complicated case when N is even. When N is even, we
shall write N = 2M . First, let us suppose that N is divisible by 4. In this case, every
γ ∈ Z/NZ satisfies:

(γ +M)2 ≡ γ2 + 2M · γ +M2 ≡ γ2

(modulo N). Thus, it follows that the function ψ on G ∼= Z/NZ is obtained by pulling back
a function on G/M ·G ∼= Z/MZ via the natural projection G→ G/M ·G. In particular, it
follows from Proposition 1.2, (i.), that the Fourier coefficients of ψ are zero for odd c (i.e.,
c which cannot be written in the form c = 2c′). Thus, we see that the above calculation
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implies that the Fourier transform F(ψ) in this case is the result of extending by zero a
constant (= G(χ,N)) multiple of a function on Z/MZ ∼= 2 · Ĝ ⊆ Ĝ whose pull-back to
Z/NZ is a discrete Gaussian on Z/NZ.

Definition 2.2. If N is divisible by 4, and ψ̃ is a function on G/MG whose pull-back to
G is a discrete Gaussian ψ on G, then we shall refer to ψ̃ as a reduced discrete Gaussian on
G/MG. If N is odd, then we will also refer to arbitrary discrete Gaussians (as in Definition
2.1) as reduced discrete Gaussians.

Finally, we consider the case of odd M . In this case, every γ ∈ Z/NZ satisfies:

(γ +M)2 ≡ γ2 + 2M · γ +M2 ≡ γ2 +M

(modulo N). In particular, it follows from Proposition 1.2, (i.), that the Fourier coefficients
of ψ are zero for even c (i.e., c which can be written in the form c = 2c′). Thus, we must
compute the coefficients for odd c = 2c′ +M (where we note that since M is odd, we may
take c′ to be even):

∫
γ∈G

ψ(γ) · χ(−c · γ) =
∫
γ∈G

χ(γ2 − 2c′ · γ −M · γ)

= χ(−(c′)2) ·
∫
γ∈G

χ((γ − c′)2 +M · γ)

= χ(−(c′)2) ·
∫
γ∈G

χ(γ2 +M · γ)

Moreover,

∫
γ∈G

χ(γ2 +M · γ) =
∫
γ∈2·G

χ(γ2) −
∫
γ∈2·G

χ((γ +M)2)

=
∫
γ∈2·G

χ(γ2) −
∫
γ∈2·G

χ(γ2 + 2M · γ +M2)

= 2 ·
∫
γ∈2·G

χ(γ2)

= 2 · G(χ2,M)

(where we note that since χ is faithful, we have χ(M2) = χ(M) = −1).

Next, let us recall from the computations of Gauss sums in [Lang], pp. 86-87, that we
have

G(χ2,M) = εχ2,M ·
√
M �= 0
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where ε4χ2,M = 1. Similarly, if N is odd, then we have

G(χ,N) = εχ,N ·
√
N �= 0

where ε4χ,N = 1. Finally, if N is even, then we have

G(χ,N) = εχ,N · (1 + i) ·
√
N �= 0

where ε4χ,N = 1, i =
√
−1. Thus, we see that we have proven the following result:

Proposition 2.3. Let χ : G → Gm be a faithful character. Let ψ(γ) def= χ(γ2) be
the discrete Gaussian on G associated to χ. For c ∈ Z/NZ, write χc for the character
G→ Gm defined by χc(γ)

def= χ(c · γ). Then:

(i.) Suppose that N is odd. Then

{F(ψ)}(χc) = G(χ,N) · χ(−1
4
· c2)

where G(χ,N) def=
∑

γ∈G χ(γ2) = εχ,N ·
√
N �= 0 (and ε4χ,N = 1). Thus, F(ψ) is equal to

a nonzero multiple of a discrete Gaussian on Ĝ.

(ii.) Suppose that N = 2M is even, but M is odd. Then {F(ψ)}(χc) = 0 if c ∈
2Z/NZ. If c = 2c′ +M for c′ ∈ 2Z/NZ, then

{F(ψ)}(χc) = 2 · G(χ2,M) · χ(−(c′)2)

where G(χ2,M) def=
∑

γ∈2Z/NZ χ(γ2) = εχ2,M ·
√
M �= 0 (and ε4χ2,M = 1). Thus, F(ψ) is

equal to a nonzero multiple of the translate by M ∈ Z/NZ ∼= Ĝ of the extension by zero of
a discrete Gaussian on 2 · Ĝ (⊆ Ĝ).

(iii.) Suppose that N = 2M and M are even. Then {F(ψ)}(χc) = 0 if c ∈ (2Z +
M)/NZ. If c = 2c′ for c′ ∈ Z/NZ, then

{F(ψ)}(χc) = G(χ,N) · χ(−(c′)2)

where G(χ,N) def=
∑

γ∈G χ(γ2) = εχ,N · (1 + i)
√
N �= 0 (and ε4χ,N = 1, i =

√
−1). Thus,

F(ψ) is equal to a nonzero multiple of the extension by zero of a function on 2 ·Ĝ ∼= Z/MZ
whose pull-back to Z/NZ is a discrete Gaussian on Z/NZ.

Thus, in summary, “the Fourier transform of a reduced discrete Gaussian is itself a nonzero
multiple (i.e., by a certain Gauss sum) of a reduced discrete Gaussian.”
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Remark. Frequently, we will work with finite, flat group schemes G of order N over bases
where N is not necessarily invertible, or with finite, étale group schemes which are étale
locally, but not necessarily globally, isomorphic to Z/NZ. In these cases, we shall also
refer to functions on G as (reduced) discrete Gaussians if they become (reduced) discrete
Gaussians as in Definition 2.2 after N is inverted, and a suitable isomorphism with Z/NZ
is chosen over some étale covering of the original base.

§3. Review of Degree Computations in [HAT]

The purpose of this § is to review various aspects of the theory of [HAT] in character-
istic 0, and to explain the fundamental set-up of the theory of the present paper.

Let S log be a Z-flat fine noetherian log scheme. Let us assume that we are given a log
elliptic curve (cf. [HAT], Chapter III, §1.1)

C log → S log

over S log which is smooth over a schematically dense open subscheme of S. It thus follows
that the “divisor at infinity” (i.e., the pull-back via the associated classifying morphism
of the divisor at infinity of (M1,0)Z) is a Cartier divisor D ⊆ S. Thus, just as in [HAT],
Chapter IV, §4,5, we have a stack S∞ obtained from S by adjoining the roots of the q-
parameters at the locus D ⊆ S over which C log → S log degenerates. Over S∞, we have
the smooth group scheme

f : E∞,S → S∞

whose connected components at the points of bad reduction are in natural one-to-one
correspondence with Q/Z. The metrized line bundles of [Zh] may be thought of as living
on E∞,S.

Let m, d be positive integers such that m does not divide d. Let

η ∈ E∞,S(S∞)

be a torsion point of order m. Then in [HAT], Chapter V, §1, we associated to this data
certain metrized line bundles

Lst,η, Lev

st,η

In the following discussion, we will denote by
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L

the metrized line bundle Lst,η (respectively, Lev

st,η) if d is odd (respectively, even). Note
that the push-forward f∗L of this metrized line bundle to S∞ defines a metrized vector
bundle on S∞. Moreover, this metrized line bundle admits the action of a certain natural
theta group scheme GL (cf. [HAT], Chapter IV, §5).

Next, let us assume that we are given finite, flat (i.e., over S∞) subgroup schemes

G,H ⊆ E∞,S

which are étale locally isomorphic to Z/dZ in characteristic 0 (i.e., after tensoring with
Q), and which satisfy

H ×G = dE∞,S ⊆ E∞,S

(where dE∞,S is the kernel of multiplication by d on E∞,S). We shall refer to G as the
restriction subgroup (since its principal use will be as a collection of points to which we
will restrict sections of L), and H as the Lagrangian subgroup (since its primary use will
be to descend L — cf. [HAT], Chapter IV, Theorem 1.4).

In the following discussion, we would like to consider the Fourier transforms of restric-
tions of sections of L to G. If d is odd, then the datum of G is sufficient for this purpose.
If, however, d is even, then in order to take the Fourier transform of a restricted section,
we need a canonical trivialization of the restriction L|G. Recall, however, from [HAT],
Chapter IV, Theorem 1.6, that we only have such a canonical trivialization over 2 ·G, not
over all of G. Thus, in the case that d is even, we must assume that we are also given the
following data: First of all, let us write Ẽ∞,S

def= E∞,S/(d0 · G), where d0
def= 1

2d. Thus,
the multiplication by 2 morphism on Ẽ∞,S factors into a composite of two morphisms of
degree 2:

Ẽ∞,S → E∞,S → Ẽ∞,S = E∞,S/(d0 ·G)

Moreover, the 2-torsion of Ẽ∞,S surjects onto d0 ·G ⊆ E∞,S. Thus, it follows by elementary
group theory that G ⊆ E∞,S is contained in the image of the d-torsion of E∞,S. Write

G̃ ⊆ Ẽ∞,S for the inverse image of G ⊆ E∞,S in Ẽ∞,S, and G
Ẽ/E

def= Ker(Ẽ∞,S →
E∞,S) ⊆ Ẽ∞,S. Then we have an exact sequence

0 → G
Ẽ/E

→ G̃→ G→ 0

of finite, flat group schemes over S∞ which are annihilated by d. Then in the even case,
we assume that we given the following additional data:
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a subgroup scheme Gspl ⊆ G̃ that splits the above exact sequence (i.e.,
maps isomorphically onto G).

If we pull the metrized line bundle L back to Ẽ∞,S, the resulting metrized line bundle
L|
Ẽ∞,S

has degree 2d, hence admits (by [HAT], Chapter IV, Theorem 1.6) a canonical

trivialization over any subgroup scheme of Ẽ∞,S annihilated by d — in particular, over
Gspl.

Moreover, it follows (from [HAT], Chapter IV, Theorem 1.6, (2)) that if we modify
the splitting Gspl by some homomorphism α : G→ G

Ẽ/E
, then the resulting trivialization

differs from the trivialization corresponding to the given Gspl by a factor given by the
function β ◦ α : G → μ2, for some fixed homomorphism β : G

Ẽ/E
→ μ2 (which is

independent of α).

Remark. Suppose just for the remainder of this Remark that S is of characteristic 0. Since
G
Ẽ/E

is a finite étale group scheme of rank 2 over S∞, G
Ẽ/E

is abstractly isomorphic to
{±1} ∼= μ2 (where the “∼=” holds since we are in characteristic zero). Moreover, I claim
that β is the unique isomorphism between G

Ẽ/E
and μ2. Indeed, if this were not the case,

then β would be trivial, and we would obtain that the trivialization of L|Gspl = L|G is
independent of the choice of splitting Gspl. Moreover, if the trivialization is independent
of the splitting for this particular choice of G, then it follows (by considering the action of
Galois on G in the universal case, i.e., finite étale coverings of the moduli stack (M1,0)Q)
that this holds for all G. On the other hand, if this holds for all G, then it would follow
that the canonical section of [HAT], Chapter IV, Theorem 1.6, extends to a section defined
over KL (i.e., not just 2 ·KL) whose image is contained in the subscheme SL of symmetric
elements. Also, let us observe that since the image of this extended section lies in SL, it
follows (by the same argument as that used to prove the latter part of [HAT], Chapter IV,
Theorem 1.6, (2)) that the formula “{σ(a+b)·σ(a)−1 ·σ(b)−1}2 = [a, b]” of [HAT], Chapter
IV, Theorem 1.6, (2), also applies to this extended section. But this implies that the Weil
pairing [−,−] on d-torsion points of the universal elliptic curve over (M1,0)Q admits a
square root, which is absurd. (Indeed, the field of constants in (i.e., algebraic closure of Q
in) the field of definition of these d-torsion points in the universal case is Q(e2πi/d), but
the existence of such a square root would imply that Q(e2πi/2d) ⊆ Q(e2πi/d), which is false,
since d is even.) This completes the proof of the claim.

The purpose of the above Remark was to convince the reader that the introduction of
the splitting Gspl is, in fact, unavoidable. Thus, one way to summarize the above discussion
in a fashion which is independent of the choice of splitting Gspl is the following: There is
a natural Hom(G,μ2)-torsor

T2 → S∞

13



determined by E∞,S, G, which is nontrivial in general. Moreover, over T2, the restriction
L|G admits a canonical trivialization.

Thus, at any rate, if we assume that we are given a splitting Gspl whenever d is
even, then regardless of the parity of d, we obtain (cf. [HAT], Chapter IX, §3) a natural
isomorphism

L|G ∼= OG ⊗OS∞ K

where K def= L|e is the restriction of L to the identity section ∈ E∞,S(S∞). Similarly, (since
our assumptions on G and H are identical) if we assume that we are given a splitting Hspl

of the analogous exact sequence for H

0 → H
Ẽ/E

→ H̃ → H → 0

whenever d is even, then regardless of the parity of d, we obtain (cf. [HAT], Chapter IX,
§3) a natural subgroup scheme

H ⊆ GL

which is Lagrangian in the sense of [MB], Chapitre V, Définition 2.5.1. Note that:

(1) After possibly replacing S by a finite flat cover, such an Hspl always
exists.

(2) Unlike in [HAT], Chapter IV, §1, we do not assume that H is isomorphic
either to Z/dZ or μd over S.

Let us write

E∞H ,S
def= E∞,S/H

for the quotient of E∞,S byH. Thus, we have a natural isogeny E∞,S → E∞H ,S . Moreover,
since we have a lifting H ⊆ GL of H, we also get a natural metrized line bundle LH on
E∞H,S that descends L. Write fH : E∞H,S → S∞ for the structure morphism of E∞H,S .
Note that the relative degree (i.e., with respect to fH) of LH is 1. Thus, it follows that
(fH )∗LH is a metrized line bundle on S∞. Write

M def= {(fH)∗LH}−1

Next, let us observe that if we compose the Fourier transform FG (tensored with K)
discussed in §1 with the trivialization isomorphism L|G ∼= OG⊗OS∞ K reviewed above, we
get a morphism
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L|G → O
Ĝ
⊗OS∞ K

If we then compose this morphism with the morphism obtained by restricting sections of
LH (first to E∞,S and then) to G, we obtain a morphism

E : M−1 → O
Ĝ
⊗OS∞ K

which maps a section of LH to the Fourier expansion of the corresponding algebraic theta
function. This “theta Fourier expansion morphism” is the main topic of the present paper.

Note that since O
Ĝ

has a natural OS∞-algebra structure, it makes sense to speak of
the norm of a section of O

Ĝ
. Thus, this norm will form a section of OS∞ . In particular, if

we take the norm of E, we obtain a section

ν ∈ Γ(S∞,M⊗d ⊗K⊗d)

The main technical goal of the present paper is to show that ν is invertible on the interior
US ⊆ S∞ of S∞ (i.e., the open subscheme where the log structure is trivial). This goal
will be achieved by computing the order of the zeroes of ν at the points at infinity, and
comparing the sum of these orders to the degree of the metrized line bundle M⊗d ⊗ K⊗d

(in the universal case, i.e., when the base is given by the moduli stack of log elliptic curves
— note that over such a base, the notion of “degree” makes sense), which is given by
Propositions 3.1, 3.2, below. It turns out that these two numbers coincide. This will
suffice to show that ν is invertible on the interior US

def= S −D.

Remark. If we change the choice of splitting Gspl, then the resulting trivialization gets
multiplied (cf. the above discussion) by some character G → μ2. The effect of such
a multiplication on the Fourier transform (cf. Proposition 1.1, (ii.)) is given by the
automorphism of O

Ĝ
induced by translation by this character G → μ2 (regarded as

an element of Ĝ = Hom(G,Gm)). Clearly, the norm is unaffected by such automor-
phisms. In particular, the norm ν is independent of the choice of splitting. One way to
summarize this observation in a way that does not involve Gspl explicitly is the follow-
ing: The Hom(G,μ2)-torsor T2 → S∞ discussed above defines (via the natural inclusion
Hom(G,μ2) ↪→ Hom(G,Gm) = Ĝ) a natural Ĝ-torsor

T
Ĝ
→ S∞

Moreover, the Fourier transform of a section of L|G is naturally given by an element of
OT

Ĝ

⊗OS∞ K.

For the remainder of this §, let us assume that S is a smooth, proper (not necessarily
connected) one-dimensional scheme over C (the complex number field — in fact, any field
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of characteristic zero will do). Also, let us assume that the log structure of S log arises
from a finite number of points. For simplicity, we assume that C log → S log degenerates at
all the points at which the log structure of S log is nontrivial. Recall from [HAT], Chapter
IV, §5, that, under these assumptions, it makes sense to consider the degree of a metrized
vector bundle on S∞, and from [HAT], Chapter V, Proposition 1.1, that:

Proposition 3.1. We have: deg(M) = 1
24d

(d− 1) · log(q).

Remark. Just as in [HAT], degrees will always be expressed in “log(q)” units, i.e., those
units for which the divisor at infinity of the moduli stack (M1,0)C has degree 1.

Proof. Since we are working here with “H-invariants” (cf. [HAT], Chapter IV, Theorem
1.4) of the push-forward that appears in [HAT], Chapter V, Proposition 1.1, the degree of
M−1 is 1

d times the degree appearing in loc. cit. ©

Proposition 3.2. We have: deg(M⊗d⊗K⊗d) = 1
24 (d− 1) · log(q) + d · [L · e]. Moreover,

[L · e] = 0 if d is odd, and

= −1
d
·
∑
ι

{φ1(−d · ηι +
1
2
) · log(q) = −1

d
·
∑
ι

{φ1(−d · ηι +
1
2
) − φ1(−d · ηι)} · log(q)

if d is even. (Here, ηι denotes the element of Q/Z (i.e., the connected component of
the special fiber of E∞,S → S∞) defined at the point at infinity ι by the torsion point
η ∈ E∞,S(S∞), and φ1(θ) = 1

2θ
2 − 1

2 |θ| + 1
12 (for |θ| ≤ 1

2 ) is the function of [HAT],
Chapter IV, Proposition 4.4.)

Proof. It remains only to remark that the computation of [L · e] follows from [HAT],
Chapter V, Proposition 1.2. ©

The computation underlying the coincidence of degrees referred to above is quite
complicated and forms the topic of §4-8. One of the ingredients that we will need in
this computation is (a certain consequence of) the rather complicated degree computation
carried out in [HAT], Chapter VI, §3. For d′ a positive integer ≤ d, let us consider the sums
(cf. the computation in the proof of [HAT], Chapter VI, Theorem 3.1, which corresponds
to the case d′ = d)

Z(d, d′,m) def=
∑
ι

d′∑
j=1

1
d
· cj(Case Xι) · log(q)

(where, just as in [HAT], sums over ι are to be interpreted as averages, in keeping with the
principle that everything is to be in “log(q) units”). Put another way, this number is the
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sum of the d′ smallest exponents of q that appear in the q-expansion of the theta functions
that arise at the various points ι at infinity. It is not difficult to see that this number is
determined uniquely by d, d′, and m.

Proposition 3.3. If d′ is odd, then

Z(d, d′,m) =
d′

24d
((d′)2 − 1) · log(q)

If d, d′ are even, then

Z(d, d′,m) =
d′

24d
((d′)2 − 1) · log(q) − d′

d
·
∑
ι

φ1(−d · ηι +
1
2
) · log(q)

=
d′

24d
((d′)2 − 1) · log(q) − d′

d
·
∑
ι

{φ1(−d · ηι +
1
2
) − φ1(−d · ηι)} · log(q)

Here, ηι denotes the element of Q/Z (i.e., the connected component of the special fiber of
E∞,S → S∞) defined at the point at infinity ι by the torsion point η ∈ E∞,S(S∞), and
φ1(θ) = 1

2θ
2 − 1

2 |θ| + 1
12 (for |θ| ≤ 1

2 ) is the function of [HAT], Chapter IV, Proposition
4.4.

Proof. For d′ odd, the result follows (even when d is even) from the computations in
[HAT], Chapter VI, the portion of the proof of Theorem 3.1 entitled “Computation of the
Degree in the Odd Case” (which reduce, essentially, to [HAT], Chapter V, Lemma 4.2).
For d, d′ even, the result follows from the computations in [HAT], Chapter VI, the portion
of the proof of Theorem 3.1 entitled “Computation of the Degree in the Even Case.” ©

Remark. Often, when the entire discussion consists of degrees “in log(q) units,” we will
omit the symbol “log(q),” as in [HAT].

Finally, before proceeding, we would like to introduce some more notation. Let us
write

m′ def=
m

(m,d)

Thus, put another way, m′ is the order of the torsion point d · η. Note that Z(d, d′,m)
depends only on d, d′, and m′, i.e., it may be thought of as a function of these three
variables. When we wish to think of it that way, we shall write:

Z ′(d, d′,m′)

for Z(d, d′,m).
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§4. The Fourier Transform of an Algebraic Theta Function:
The Case of an Étale Lagrangian Subgroup

In this §, we would like to estimate the order of vanishing of the section ν of §3 at
those points at infinity where the Lagrangian subgroup H ⊆ E∞,S is “of étale type,” i.e.,
maps injectively into the group of connected components Q/Z in the special fiber.

We maintain the notation of §3, except that in the present §, we work in a neighborhood
of infinity, i.e., we assume that

S
def= Spec(C[[q

1
2md ]])

(equipped with the log structure defined by the divisor V (q
1

2md )) and that the one-
dimensional semi-abelian scheme in question E → S (i.e., the one-dimensional semi-abelian
scheme whose logarithmic compactification is C log → S log) is the Tate curve “Gm/q

Z.”
Write U for the standard multiplicative coordinate on the Gm that uniformizes E. Since
we chose the base S so that q admits a 2d-th root in OS, it follows that our Lagrangian
and restriction subgroups H,G ⊆ E∞,S, as well as the splittings Gspl,Hspl ⊆ Ẽ∞,S when d
is even, are all defined over S (i.e., not just over S∞). Let us denote the unique “point at
infinity” (i.e., the special point of S) by ∞S . Also, we set n def= 2m (as in [HAT], Chapter
IV, §2,3).

Let us denote by E′
∞,S another copy of E∞,S. In the following, we would like to

think of E′
∞,S as a covering of E∞,S , by means of the isogeny given by the morphism

“multiplication by n”:

E′
∞,S

[n]−→ E∞,S

Write L′ def= L|E′
∞,S

. Note that since L′
has degree n2 · d, it follows that

KL′ = n2·dE
′
∞,S

We would like to think of E′
∞,S as admitting a Schottky uniformization by “another copy

of Gm,” which we shall denote by G′
m. The standard multiplicative coordinate on G′

m

will be denoted by U ′. Thus, (U ′)n = U . Also, for various natural numbers N , we shall
denote the copy of μN that sits naturally inside G′

m by μ′
N .

Next, let us observe that the natural action of G′
m on the Schottky uniformization of

(E′
∞,S ,L

′
) (cf., e.g., the discussion of [HAT], Chapter IV, §2,3) induces a natural action

of μ′
n2·d on L′

(cf., e.g., the discussion at the beginning of [HAT], Chapter IV, §2) — that
is, we get a homomorphism:

iSch : μ′
n2·d ↪→ GL′
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On the other hand, let us observe that since L is defined by translating a symmetric line
bundle by a torsion point of order m (and then readjusting the integral structure/metric
— cf. the definitions of Lst,η, L

ev

st,η in [HAT], Chapter V, §1), it follows that if we forget
about the adjustment of the metric, then L′

is totally symmetric (i.e., equal to the square
of a symmetric line bundle). Moreover, it follows from the discussion preceding [HAT],
Chapter V, Proposition 1.1, that the curvature of L′

is symmetric, which implies that L′

is, in fact, totally symmetric as a metrized line bundle. Thus, since n is even, it follows
from [HAT], Chapter IV, Theorem 1.6, that the canonical section “σ” of loc. cit. defines
a homomorphism:

iσ′ : μ′
n·d ↪→ GL′

(the fact that the content of [HAT], Chapter IV, Theorem 1.6, is still valid when we consider
metrics follows as in the discussion of [HAT], Chapter IX, §3). Thus, it is natural to ask
whether or not these two homomorphisms coincide on μ′

n·d:

Lemma 4.1. We have: iσ′ = iSch|μ′
n·d

.

Proof. Recall that L′
is totally symmetric as a metrized line bundle, and that the action

of G′
m on the Schottky uniformization of the pair (E′

∞,S,L
′
) is also symmetric (cf. [HAT],

Chapter IV, §2). Thus, it follows that iSch maps into SL′ . Then it follows from the
definition of the canonical section “σ” in [HAT], Chapter IV, §1, (together with the fact
that iSch is a homomorphism) that iSch|μ′

n·d
= iσ′ , as desired. ©

Next, let us recall that the push-forward (fH)∗(LH) is generated by a section whose
corresponding theta function is given by (cf. [HAT], Chapter V, Theorem 4.8; [HAT],
Chapter VII, §6):

∑
k∈Z

q
1
d ( 1

2 ·k
2+(iχ/n)·k) · Uk · (U ′)iχ · χ(k) · θm

for some character χ : Z → μn (where n def= 2m), and some integer iχ ∈ {−m,−m +
1, . . . ,−1, 0, 1, . . . ,m− 1}. Since “(U ′)iχ · θm” essentially amounts to the trivialization in
question, we see that the “actual theta function” is given by:

Θ def=
∑
k∈Z

q
1
d ( 1

2 ·k
2+(iχ/n)·k) · Uk · χ(k)

Let us first consider the case where G is of multiplicative type, i.e., G = μd ⊆ Gm. This
is in some sense the most fundamental and important case of the various cases (relative to
the “position” of G, H inside dE∞,S) that will be considered in this and the following §.
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(As we saw in the Remark following Proposition 3.2, the norm ν is independent of the choice
of Gspl. Moreover, let us note that since d0 ·G is multiplicative, the isogeny Ẽ∞,S → E∞,S

of §3 is “of étale type,” i.e., it lies between E∞,S and its Schottky uniformization. Put
another way, this means that Ẽ∞,S is Schottky-uniformized by the same Gm as E∞,S.

Thus, it makes sense to stipulate that we take Gspl
def= μd ⊆ Gm.) In this case, restriction

to G amounts to identifying Uk and Uk
′

whenever k ≡ k modulo d. Now according to
the theory of [HAT], Chapter VIII, §2,3,4, there is a certain special set of d consecutive
integers KCrit such that the result of restricting the above theta function to G = μd is
given by:

Θμ
def=

∑
k0∈Z/dZ

(U |μd
)k0 ·

( ∑
k∈Z, k≡k0(mod d)

q
1
d ( 1

2 ·k
2+(iχ/n)·k) · χ(k)

)

=
∑

k∈KCrit

q
1
d ( 1

2 ·k
2+(iχ/n)·k) · (U |μ

d
)k · (χ(k) + εk) · {1 + (smaller powers of q)}

where εk is a certain n-th root of unity if k is exceptional (cf. [HAT], Chapter VIII,
Lemmas 4.3, 4.4), and εk = 0 otherwise (i.e., if k is not exceptional). There is at most one
exceptional k in the set KCrit. Moreover, the exponents of q appearing in the above sum
are precisely the d numbers 1

d
·cj (for j = 1, . . . , d) appearing in the definition of Z(d, d,m).

Moreover, since the set KCrit consists of k consecutive integers, it follows that the above
function on μd is essentially the Fourier expansion of the restriction of the theta function
in question to G = μd. Thus, we obtain that the degree of vanishing at ∞S of the norm
ν constructed in §3 — which we shall denote by deg(ν) — is ≥ the “ι portion” of the
sum in the definition of Z(d, d,m), where ι corresponds to the point at infinity ∞S where
we have localized in the present discussion. (Here, we say “≥,” rather than “=” since we
dot know whether or not the coefficient χ(k) + εk which appeared above is nonzero.) In
particular, if we average over all the possible ι’s (which corresponds to all possible torsion
points η of order precisely m, weighted in the proper fashion), we obtain that the resulting
average Avgη(deg(ν)) satisfies the following:

Lemma 4.2. We have:
Avgη(deg(ν)) ≥ Z(d, d,m)

for any G of multiplicative type (i.e., for which G = μd ⊆ Gm).

Thus, it remains to consider the case when G is not necessarily of multiplicative type.
Let us first observe that since Im(G) = Im(dE∞,S) ⊆ E∞H,S is independent of G, it
follows that even in the case where G is not necessarily of multiplicative type, we are in
effect restricting the sections of (fH )∗LH to the same points as in the case where G is of
multiplicative type. The effect of using a different (e.g., a non-multiplicative) G is that
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a different G results in a different trivialization at those points. Thus, in particular, the
resulting theta functions differ by a factor given by some function ψ : μd → Gm. Since
ultimately we are interested in Fourier transforms of theta functions, we thus see that:

The net effect (of using a non-multiplicative G) on the Fourier trans-
form of the theta function in question is to convolute by d−1 · F(ψ) (cf.
Proposition 1.1, (ii.)).

Thus, in the following, we propose to compute ψ and its Fourier transform F(ψ), and then
consider the degree of the zero locus at infinity of the convolution of d−1 · F(ψ) with the
Fourier transform of the theta function considered above.

To compute the difference ψ in trivializations arising from G, we must introduce some
new notation, as follows. First, we write Gμ

def= μd ⊆ Gm. Since H is of étale type, it
follows that Gμ × H = dE∞,S. Note that since H injects into the group of connected
components of the special fiber of E∞,S, we get a natural identification

H = Z/dZ

Thus, we shall think of dE∞,S asGμ×H = μd×Z/dZ. Then relative to this decomposition,
G may be written as the graph of some homomorphism αG : μd → Z/dZ.

In fact, in order to calculate ψ, we will need to lift the above data on E∞,S to E′
∞,S.

Of course, many of the lifted data on E′
∞,S will not be uniquely determined by the original

data on E∞,S, but this will not matter, since different choices of lifts will not affect the
end result. Thus, write

G′
μ

def= μ′
n2·d

(so n ·G′
μ lifts Gμ) and choose an

H ′ = Z/n2 · dZ ⊆ E′
∞,S

(where the identification of H ′ with Z/n2 · dZ is assumed to be given by the natural
homomorphism of H ′ into the group of connected components of the special fiber of E′

∞,S)
such that n·H ′ liftsH. Finally, we choose a G′ ⊆ n2·dE

′
∞,S defined by some homomorphism

αG′ : μ′
n2·d → Z/n2 · dZ

such that n ·G′ lifts G. Let us write

σ′ : 2 ·KL′ → GL′
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for the canonical section of [HAT], Chapter IV, Theorem 1.6.

We are now ready to compute ψ : μd → Gm. Let a ∈ μd = Gμ. Select a lifting

a′ ∈ n ·G′
μ of a. Let a′1 ∈ m ·G′

μ be such that 2 ·a′1 = a′. Write b′1
def= αG′(a′1); b′

def= 2b′1; b
for the image of b′ in E∞,S (i.e., b = αG(a)). Then it essentially follows from the definitions
that:

ψ(α) = σ′((a′, b′)) · σ′(b′)−1 · σ′(a′)−1 · χex(a′)

where χex : n · G′
μ → Gm is a character. (Indeed, this essentially follows from the fact

that σ′, as well as the sections of GL used in §3 to define the trivialization of L|G and the
subgroup H ⊆ GL are all homomorphisms on n ·H ′, n ·G′, G, and H. Thus, the restrictions
of two such sections to the same subgroup differ from one another by various characters.
This is what leads to the “extra factor” χex.) On the other hand, by [HAT], Chapter IV,
Theorem 1.6, (2), we have

σ′((a′, b′)) · σ′(b′)−1 · σ′(a′)−1 = ([b′1, a
′
1]

′)2

(where [−,−]′ is the pairing associated to L′
). Clearly, the right-hand side of this equality

is a 2d-th root of unity. Thus, (since ψ(−)d = 1) we obtain that χex(−)2d = 1.

Now suppose that d is odd. In this case, we may choose a′ and a′1 to be of odd order.
This implies that b′ and and b′1 are also of odd order. Since it makes sense to multiply
elements of odd order by 1

2 , we thus obtain:

([b′1, a
′
1]

′)2 = ([b′, a′]′)
1
2 = [b, a]

1
2

(where [−,−] is the pairing associated to L). In particular, we get χex(−)d = 1. By abuse
of notation, let us write χex(a) for χex(a′). That is, we have:

ψ(a) = [a, αG(a)]−
1
2 · χex(a)

for some χex : Gμ → μd. This completes the case when d is odd.

Now suppose that d is even. In this case, we obtain:

ψ(a) = ([a′1, αG′(2a′1)]
′)−1 · χex(a′)

Note that a′1 is well-defined up to the addition of an element a′′ ∈ m · d · G′
μ = μ′

2n.
Moreover, one checks easily that the pairing (x, y) �→ [x,αG′(y)]′ onG′

μ×G′
μ is symmetric.

Thus,
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[a′1 + a′′, αG′(2a′1 + 2a′′)]′ = [a′1, αG′(2a′1)]
′ · [a′′, αG′(2a′1)]

′ · [a′1, αG′(2a′′)]′ · [a′′, αG′(2a′′)]′

= [a′1, αG′(2a′1)]
′ · [a′′, αG′(a′)]′ · [a′, αG′(a′′)]′ · [a′′, αG′(2a′′)]′

= [a′1, αG′(2a′1)]
′ · [a′′, αG′(2a′)]′ · [a′′, αG′(2a′′)]′

= [a′1, αG′(2a′1)]
′ · [??, n · d · αG′(a′ + a′′)]′

= [a′1, αG′(2a′1)]
′

where we use that n · d · a′ = 0; (since d is even) n · d · a′′ = 0. Thus, it follows that
([a′1, αG′(2a′1)]

′)−1 depends only on a (i.e., not on the choice of lifting a′1). In particular,
(since ψ(a) manifestly only depends on a) we obtain that χex(a′) depends only on a. By
abuse of notation, we will write χex(a) for χex(a′). Thus, in summary:

Lemma 4.3. Let a ∈ Gμ = μd. Then if d is odd, then

ψ(a) = [a, αG(a)]−
1
2 · χex(a)

for some character χex : Gμ → μd. If d is even, and a′1 ∈ m ·G′
μ satisfies 2a′1 �→ a, then

ψ(a) = ([a′1, αG′(2a′1)]
′)−1 · χex(a)

for some character χex : Gμ → μd. In particular, if the homomomorphism αG : μd →
Z/dZ is of order dord, then it follows that (regardless of the parity of d) ψ : μd → Gm is —
up to a factor given by the character χex — the pull-back to μd via the natural projection
μd → μdord (arising from the fact that dord divides d) of a reduced discrete Gaussian (cf.
Definition 2.2) on μdord .

Proof. It remains only to verify that the bracketed portions of the expressions that we
obtained above for ψ(a) are indeed pull-backs of reduced discrete Gaussians as described.
But this follows immediately from the definitions. Note that we use here the well-known
fact that the pairings [−,−]; [−,−]′ are nondegenerate. (Indeed, if they were degenerate,
then the theory of theta groups would imply that that L′

descends to some quotient of
E′

∞,S by a finite group scheme of order > n2 · d, which is absurd, since deg(L′
) = n2 · d.)

©

Thus, by Proposition 1.1, (ii.); Proposition 1.2, (i.); and Proposition 2.3, it follows
that

The effect on the Fourier expansion of the theta function of the trivializa-
tion defined by G is given by translation by an element of Ĝ (determined
by the character χex), followed by convolution by a function on Ĝ of the
form:

ε · dord
− 1

2 · IndZ/dZ
Z/dordZ

ξ
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where ε is a 4-th root of unity (respectively,
√

2 times an 8-th root of
unity) if dord is odd (respectively, even), and ξ is a reduced discrete
Gaussian on Z/dordZ.

Let us denote the function ψ ·Θμ on μd (whose Fourier expansion is discussed above) by:

ΘG
def= ψ · Θμ

Then if we assume (so that we do not have to deal in the expression below with “exceptional
k”) that dord �= 1 (note: the case dord = 1 was dealt with above in Lemma 4.2), then
since the values of ξ are all ∈ μ2dord, we obtain that (for k0 ∈ Z/dZ) the coefficient of
(U |μd

)k0+kex (where kex ∈ Z/dZ is a fixed element determined by χex) in the Fourier
expansion of ΘG is of the following form:

Coeff(U |μ
d
)k0+kex (ΘG)

= ε ·dord
− 1

2 ·
{∑

k∈Z, k≡k0(mod deff )
q

1
d ( 1

2 ·k
2+(iχ/n)·k) ·χ(k) · ξ(k−k0deff

)
}

= ε · dord
− 1

2 ·
(

a μn·dord
-linear combination of those q

1
d ( 1

2 ·k
2+(iχ/n)·k)

for which k ∈ KCrit, k ≡ k0 (modulo deff),

+ smaller powers of q
)

where deff
def= d/dord. Since the power of q that appears in the coefficient of (U |μd

)k0+kex for
Θμ is precisely the smallest exponent of q that appears in the q-expansion of the original
theta function Θ among those terms indexed by a k such that k ≡ k0 (modulo d), it thus
follows that the smallest power of q that appears in the coefficient of (U |μ

d
)k0+kex for ΘG

is precisely the smallest exponent of q that appears in the q-expansion of the original theta
function Θ among those terms indexed by a k such that k ≡ k0 (modulo deff). Moreover,
this smallest power either appears precisely once in Coeff(U |μd

)k0+kex (ΘG), in which case

its coefficient (i.e., in the “μn·dord
-linear combination” discussed above) is ∈ μn·dord

, or
(cf. the “exceptional case” of [HAT], Chapter VIII, Lemmas 4.3, 4.4) it appears twice in
Coeff(U |μd

)k0+kex (ΘG), in which case its coefficient is the sum of two elements ∈ μn·dord
.

Thus, by the same reasoning as that used to prove Lemma 4.2, we obtain the following,
which is the main result of this §:

Theorem 4.4. Assume that the Lagrangian subgroup H is of étale type. Then for any
restriction subgroup G ⊆ dE∞,S, we have:

Avgη(deg(ν)) ≥ dord · Z(d, deff ,m)
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where d = deff ·dord, and dord is the order of the difference between G and the multiplicative
subgroup Gμ = μd.

Moreover, the coefficient of the smallest power of q in Coeff (U |μd
)k0+kex (ΘG) is of the

form:
ε · dord

− 1
2 · (an element ∈ μn·dord

)

(where ε is a 4-th root of unity (respectively,
√

2 times an 8-th root of unity) if dord is
odd (respectively, even)), with at most one possible exceptional class of k0’s in Z/deffZ.
If this exception occurs, and the above inequality is an equality, then the coefficient of the
smallest power of q in Coeff(U |μd

)k0+kex (ΘG) in this case is of the form:

ε · dord
− 1

2 · (a nonzero sum of two elements ∈ μn·dord
)

(where ε is a 4-th root of unity (respectively,
√

2 times an 8-th root of unity) if dord is odd
(respectively, even)).

Proof. Note that here, we only obtain an inequality

Avgη(deg(ν)) ≥ dord · Z(d, deff ,m)

because we do not know whether or not (in the “exceptional case” for dord �= 1) the sum
of the two (n · dord)-th roots of unity is nonzero. The factor of dord that appears on the
right-hand side of this inequality arises because since the coefficient Coeff(U |μd

)k0+kex (ΘG)

depends only on the class of k0 in Z/deffZ, zeroes occur with multiplicity d/deff = dord. ©

§5. The Fourier Transform of an Algebraic Theta Function:

The Case of a Lagrangian Subgroup with Nontrivial Multiplicative Part

In this §, we would like to estimate the order of vanishing of the section ν of §3 at those
points at infinity where the Lagrangian subgroup H ⊆ E∞,S is “not necessarily of étale
type,” i.e., does not necessarily map injectively into the group of connected components
Q/Z in the special fiber. In essence, our strategy will be to reduce to the case where H is
of étale type, which was already dealt with in §4.

In this §, we maintain the notation of §4. However, unlike the situation of §4, we do
not assume that H is of étale type. Write

Hμ
def= H

⋂
μd
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(where μd ⊆ Gm sits inside the copy of Gm that uniformizes E). Note that the subgroup
Hμ ⊆ H denotes the portion of the Lagrangian subgroupH which is purely of multiplicative
type. Write Het for the image of H in the group of connected components in the special
fiber of E∞,S (a group which may be identified with Q/Z). Thus, we have an exact
sequence:

0 → Hμ → H → Het → 0

We denote the orders of Hμ, Het by: hμ
def= |Hμ|; het

def= |Het|. Thus, hμ · het = d. Also,
let us write

Get
def= Ker([hμ] : G→ G)

for the kernel of multiplication by hμ on G. Thus, |Get| = het.

Next, let us set:

E∞μ,S
def= E∞,S/Hμ

On the other hand, let us recall the quotient E∞H,S
def= E∞,S/H of §3. Since Hμ ⊆ H, it

follows that the isogeny E∞,S → E∞H,S factors into a composite of isogenies:

E∞,S

Hμ−→ E∞μ,S
Het−→ E∞H ,S

where Hμ = μ(hμ); Het = Z/hetZ; and the groups above the arrows denote the ker-
nels of the homomorphisms corresponding to the arrows. If we denote the respective
“q-parameters” and “standard multiplicative coordinates on the respective Schottky uni-
formizations” by q, qμ, qH , and U , Uμ, and UH , respectively, then we have:

q
hμ = qμ; qμ = qhet

H ; U
hμ = Uμ; Uμ = UH

In the following, we will also write Gm, (Gm)μ, (Gm)H for the copies of “Gm” that
Schottky uniformize E∞,S, E∞μ,S, and E∞H,S , respectively, (so, in particular, (Gm)μ =

(Gm)H) and μN ⊆ Gm; μ
μ
N ⊆ (Gm)μ; μHN ⊆ (Gm)H for the copies of “μN” lying inside

these copies of Gm. Finally, observe that since we are given a lifting H ⊆ GL of H, we also
get natural metrized line bundles Lμ and LH on E∞μ,S and E∞H ,S, respectively, that

descend L.

Note that since H and G generate dE∞,S , it follows that G ↪→ E∞μ,S. Thus, we
obtain subgroup schemes
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Het, Get ↪→ E∞μ,S

Note that Het is tautologically of étale type. Thus, it follows that the image ImE∞H ,S (Get)
of Get in E∞H,S is of multiplicative type. (Indeed, since E∞H,S is obtained from E∞μ,S
by forming the quotient by Het, which is of étale type, it follows that the entire image
ImE∞H ,S (hetE∞μ,S) = ImE∞H ,S (μμ

het
) in E∞H ,S is of multiplicative type.)

Next, write

Gμ
def= G/Get

Note that |Gμ| = hμ, and that (since the image ImE∞H ,S (Get) of Get in E∞H,S is of mul-
tiplicative type) Gμ maps naturally into the group of connected components in the special
fiber of E∞H ,S. Moreover, this map is injective. (Indeed, this injectivity may be verified for
each of the p-primary portions (where p is a prime number) of Gμ independently; thus, it
suffices to verify this injectivity in the case where d is a prime power. But then, if injectiv-
ity did not hold, then it would follow that (ImE∞μ,S (G)+Het)

⋂
μ

μ
d �⊆ μ

μ
het

, which implies

(by multiplying both sides of this non-inclusion by het) that ImE∞μ,S (G)
⋂

μ
μ
d �= {1} (so,

in particular, G
⋂

μd �= {1}, hence (since G and H generate dE∞,S) that hμ = |Hμ| = 1,
so Gμ = {1} — which implies that injectivity holds trivially.) Thus, in summary, this
injection induces a natural identification

Gμ =
1
hμ

Z/Z

Next, let us define

heff
def= |ImE∞μ,S (Get)

⋂
μ

μ
d |

Note that since H and G generate dE∞,S , it follows that (heff , hμ) = 1. Since heff divides
het, let us write het = heff · hord. Write

Heff ⊆ Het; Geff ⊆ Get

for the respective subgroups given by the kernel of multiplication by hord. Thus, |Heff | =
|Geff | = heff .

The main theme of this § is the following:

We would like to apply the theory of §4 to the data

(E∞μ,S ;Lμ;Het, Get ↪→ E∞μ,S)
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where we take the point “η” of §4 to be the given η plus a collection of
representatives of the various classes of Gμ = G/Get.

Next, we consider metrized line bundles. Note that the metrized line bundle LH on
E∞H,S has degree 1 and curvature (cf. [HAT], Chapter V, §1) given by:

1
hμ

·
(hμ)−1∑
i=0

δ[i/hμ ]

(where δ[i/hμ ] denotes the delta distribution on S1 concentrated at the point [i/hμ] ⊆ S1).
Let

L′
H

def= LH(ψ)

where ψ : S1 → R is the unique piecewise smooth function such that the curvature of L′
H

is equal to δ[0], and
∫
S1 ψ = 0. Then, as reviewed in §4, L′

H is generated by the section
defined by the theta function:

ΘH
def= q

− 1
2k

2
η

H

∑
k∈Z

q
1
2 (k+kη)2

H · UkH · χ(k)

where we write kη
def= iχ/n (so |kη| ≤ 1

2
). Observe that as a function on Z, the function

k �→ 1
2 (k + kη)2 assumes its minimum at k = 0. Moreover, if we restrict ΘH to μHhet

, then
the highest power of qH appearing in the coefficient of (UH |μH

het
)k0 is given by:

−1
2
k2
η + Mink≡k0 mod het {1

2
(k + kη)2}

= −Mink∈Z {1
2
(k + kη)2} + Mink≡k0 mod het {1

2
(k + kη)2}

Now to consider such coefficients of (UH |μH
het

)k0 amounts to considering the Fourier trans-

form of the restriction of the theta function in question to μHhet
. More generally — cf. the

theory of §4, which we think of as being applied to the data

(E∞μ,S ;Lμ;Het, Get ↪→ E∞μ,S)

— we would like to consider the Fourier coefficients of the convolution of ΘH |μH
het

with

some reduced discrete Gaussian (times a character) on μHhord
(regarded as a quotient of

μHhet
). (Note that hord = het/heff appears here since heff = |ImE∞μ,S (Get)

⋂
μ

μ
d |.) Then
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the highest power of qH appearing in the coefficient of (UH |μH
het

)k0+kex (for such a convo-
lution, where kex is a constant determined by the character) is given by:

−1
2
k2
η + Mink≡k0 mod heff {1

2
(k + kη)2}

= −Mink∈Z {1
2
(k + kη)2} + Mink≡k0 mod heff {1

2
(k + kη)2}

Note that for an appropriate choice of reduced discrete Gaussian, this convolution amounts
precisely to the restriction of the theta function in question to Get.

Of course, ultimately, we wish to consider the Fourier coefficients of the restriction of
the theta function in question to G. This amounts to restricting ΘH to Get +γ, for various
γ ∈ Gμ = G/Get. Write kγ ∈ 1

hμ
Z for a representative of γ ∈ Gμ = 1

hμ
Z/Z. Also, let us

define a metrized line bundle on E∞H ,S

L′′
H

def= LH(ψ(0))

(where ψ : S1 → R is the function appearing in the definition of L′
H). Thus, LH , L′

H , and
L′′
H have the same restriction to the generic fiber of E∞H,S ; LH and L′′

H have the same
curvature; and L′

H and L′′
H have the same metric structure at the connected component

of the identity (in the special fiber of E∞H ,S). Let us write Ĝm for the q-adic formal
completion of (Gm)S∞ . Then it follows from the determination of the metric given in, e.g.,
[HAT], Chapter VII, Lemma 6.4 (cf. also the discussion following this lemma), together

with the well-known explicit form of theta functions on (Gm)H/q
(1/(hμ·n))·Z
H (cf. [HAT],

Chapter V, Theorem 4.8), that if we regard ΘH as a section of L′′
H , then its restriction to

the copy of Ĝm corresponding to γ will be given (up to a possible factor ∈ μ∞) by:

Θ′′
H [γ] def= q

− 1
2k

2
η

H ·
∑
k∈Z

q
1
2 (k+kη+kγ)2

H · Uk+kγ

H · χ(k)

(where, in the above expression, the factor Ukγ

H may be thought of as part of the triv-
ialization in use; moreover, since this same factor multiplies all the terms in the above
expression, it may be ignored — i.e., we essentially have a function in integral powers of
UH). Thus, if we write

1
2
k2
H

def= Mink∈Z, γ∈Gμ {1
2
(k + kη + kγ)2} ≤ 1

2
k2
η

then

ΘH [γ] def= q
1
2k

2
η− 1

2k
2
H

H · Θ′′
H [γ] = q

− 1
2k

2
H

H ·
∑
k∈Z

q
1
2 (k+kη+kγ)2

H · Uk+kγ

H · χ(k)
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is the theta function associated to a generator of (fH)∗LH . Moreover, if we then convolute
ΘH [γ]|μH

het
with some reduced discrete Gaussian (times a character) pulled back from

the quotient μHhet
→ μHhord

, then it follows that the highest power of qH appearing in the
coefficient of (UH |μH

het
)k0+kex (where k0 ∈ Z) for such a convolution is given by:

−1
2
k2
H + Mink≡k0−kγ mod heff {1

2
(k + kη + kγ)2}

(where k ∈ Z, and the congruence symbol “≡” is well-defined since, as remarked above,
(heff , hμ) = 1). Thus, if we allow γ to vary, then we obtain that the highest power of qH
appearing in the coefficient of (UH |μH

het
)k0+kex (where k0 ∈ Z) for such a convolution is

given by:

−1
2
k2
H + Minj/hμ≡k0 mod heff {1

2
((j/hμ) + kη)2}

= −1
2
k2
H +

1
h2
μ

· Minj≡hμ ·k0 mod heff {1
2
(j + hμ · kη)2}

(where j ∈ Z, and the congruence symbol “≡” is well-defined since, as remarked above,
(heff , hμ) = 1).

The above analysis thus implies — by the same reasoning as that used to derive
Theorem 4.4 in §4 — the following generalization of Theorem 4.4, which is the main result
of this §:

Theorem 5.1. For any Lagrangian subgroup H and any restriction subgroup G ⊆ dE∞,S,
we have:

Avgη(deg(ν)) ≥ (d/heff) · Z ′(d, heff ,m
′)

where heff = |ImE∞μ,S (Get)
⋂

μ
μ
d |.

Proof. The sums Z ′(−,−,−) are defined as sums of minima such as

Minj≡hμ ·k0 mod heff {1
2
(j + hμ · kη)2}

regarded as powers of q
1
d . Here, we wish to regard such minima as powers of q

1/h2
μ

H . But

in fact, q = q
1/hμ
μ , qμ = qhet

H implies q = q
het/hμ
H , hence

q
1
d = q

1/(het·hμ) = q
1/h2

μ
H
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so we see that we do not need to multiply the Z ′(−,−,−)’s by any factor in our estimate
of the degree of vanishing of the product of the Fourier coefficients corresponding to a
single collection of representatives in Z/dZ of the set of “equivalence classes” (Z/dZ)/heff ·
(Z/dZ) = Z/heffZ. Since, for a given class of Z/dZ modulo heff , we must contend with a
total of d/heff Fourier coefficients, we thus obtain a factor of d/heff in our final estimate.

Finally, note that the term hμ·kη appearing in the minima above corresponds precisely
to the image “d · ηι” of ηι ∈ S1 (where this S1 is the S1 corresponding to the special
fiber of the original E∞,S) in S1/(1

dZ/Z). Indeed, kη corresponds to the image of ηι in
S1/( 1

het
Z/Z) = (S1)H (i.e., the S1 corresponding to the special fiber of E∞H,S), so the

image “d · ηι” of ηι in S1/(1
dZ/Z) is given by multiplying kη by d/het = hμ, as desired. ©

Theorem 5.2. In the situation of Theorem 5.1, write hμ
def= |H

⋂
μd|; d = hμ · het;

het = heff · hord. Then the coefficient of the smallest power of q in the Fourier coefficients
of the algebraic theta function in question on G (cf. the discussion of §3) are of the form:

ε · hord
− 1

2 · (an element ∈ μn·hμ·hord
)

(where ε is a 4-th root of unity (respectively,
√

2 times an 8-th root of unity) if hord is
odd (respectively, even)), with at most one possible exceptional class of coefficients in
Ĝ/heff · Ĝ. If this exception occurs, and the inequality of Theorem 5.1 is an equality, then
the coefficient of the smallest power of q in this coefficient is of the form:

ε · hord
− 1

2 · (a nonzero sum of two elements ∈ μn·hμ·hord
)

(where ε is a 4-th root of unity (respectively,
√

2 times an 8-th root of unity) if hord is odd
(respectively, even)).

Proof. This follows essentially from the above analysis, together with the following re-
marks: First of all, it follows from the fact that the function

j �→ (j + hμ · kη)2

(on integers j such that j ≡ hμ ·k0 mod heff) is “essentially” injective (i.e., either injective
or, if it is not injective, then the fiber consists of two elements) that the minima discussed
above are achieved for “essentially” only one value of j (where “essentially” means that
there is at most one exception, in which case the minimum is achieved for precisely of two
values of j). Thus, by considering the class of this j modulo hμ, we see that we need
only consider the restriction of ΘH to Get + γ, for fixed γ ∈ Gμ. But since (by definition)
Gμ = G/Get, it follows that then we are essentially in the situation of §4, applied to the
data

(E∞μ,S ;Lμ;Het, Get ↪→ E∞μ,S)
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(so “dord” of §4 becomes het/heff = hord in the notation of the present discussion). Thus,
Theorem 5.2 follows from Theorem 4.4. Note that here, when we apply Theorem 4.4, the
“n” of Theorem 4.4 becomes n · hμ (in the notation of the present discussion) since in
addition to translating by η, we are also translating by γ whose order in G/Get divides
hμ. This completes the proof of Theorem 5.2. ©

§6. Generic Properties of the Norm

In this §, we maintain the notation of §4. (In particular, we continue to assume that
the Lagrangian subgroup is of étale type.) The goal of the present § is to determine in which
cases the norm ν (of the Fourier transform of an algebraic theta function) is generically
nonzero (on the moduli space of elliptic curves in characteristic zero).

Recall the notation

m′ def=
m

(m,d)

Thus, put another way, m′ is the order of the torsion point d · η.

Definition 6.1. If our data satisfies the conditions:

(1) d is even;

(2) m′ = 2;

(3) d · η ∈ G (where G is the restriction subgroup);

then we shall say that our data is of null type. If our data is not of null type, then we shall
say that it is of general type.

Remark. In fact, condition (1) of Definition 6.1 is implied by conditions (2) and (3).

The main result of this § is the following:

Proposition 6.2. The norm ν (introduced in §3) is generically zero on S if and only if
our data is of null type.

32



Proof. If we work over a global S as in §3, then it is immediate that every connected
component of S contains points at infinity at which the restriction subgroup G is of mul-
tiplicative type (cf. §4). Thus, it suffices to prove Proposition 6.2 in the case where G is of
multiplicative type.

Now we return to a local S (as in §4, 5). Since G is of multiplicative type, we know
the explicit form of the restriction to G of the theta function in question (cf. §4):

Θμ
def=

∑
k0∈Z/dZ

(U |μ
d
)k0 ·

( ∑
k∈Z, k≡k0(mod d)

q
1
d ( 1

2 ·k
2+(iχ/n)·k) · χ(k)

)

=
∑

k∈KCrit

q
1
d ( 1

2 ·k
2+(iχ/n)·k) · (U |μd

)k · (χ(k) + εk) · {1 + (smaller powers of q)}

Thus, if ν is generically zero, then it follows that we are “in the exceptional case,” and
that “χ(k) + εk” is zero. In this case, χ(k) + εk is equal (up to a possible factor ∈ μ∞) to
χ(d) + 1. Thus, we obtain:

χ(d) = −1

In particular, χ(d)2 = 1.

Now, relative to the notation of [HAT], Chapter V, §4, the character χ may be iden-
tified with a character “χM,” and “χM” is related to another character χL by:

χM = χL · χθ

(where χθ is a fixed character which is independent of the particulars of the data under
consideration). Note that all of these characters are characters μn × Zet → μn. Next,
recall that χL, χM (cf. the discussion at the beginning of [HAT], Chapter V, §4) faithfully
capture the twist induced on L by translation by η. More precisely,

If d is odd (respectively, even), then the order of χL (respectively, χM)
restricted to μn × (d · Zet) is equal to the order of d · η, i.e., to m′.

(Here the factor of d arises since the discussion of [HAT], Chapter V, concerns, in effect, de-
gree one line bundles on the étale quotient E∞,S → E∞,S/(Z/dZ), relative to our notation
in the present discussion.) Thus, in summary, we obtain that

χM
2|μn×(d·Zet) = χL

2|μn×(d·Zet) = 1
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(where we use the fact that since we are in the “exceptional case” (cf. [HAT], Chapter
VIII, Lemma 4.3), we are in “Cases I or II” of [HAT], Chapter V, §4, which implies that
the restriction of χL2, χM2 to μn is trivial). Thus, we obtain that:

2 · (d · η) = 1

i.e., that m′ = 2. Also, since we are “in the exceptional case” (cf. [HAT], Chapter VIII,
proof of Lemma 4.3), it follows that either we are in “Case I” (cf. [HAT], Chapter V, §4)
and d is odd, or we are in “Case II” (cf. [HAT], Chapter V, §4) and d is even.

Suppose that we are in “Case I” (cf. [HAT], Chapter V, §4) and d is odd. First, observe
that since m′ = 2 and d is odd, it follows that we may assume that m = 2. Since we are
in “Case I,” it follows that χL|μ

n
= 1. Also, since d is odd, and n = 4, it follows (from

χ(d) = −1) that χM2|Zet = 1 (but χM|Zet �= 1, since χM(d) = χ(d) = −1), hence (by the
explicit description of χθ in [HAT], Chapter IV, Theorem 2.1) that χM|Zet = χθ|Zet , so
χL|Zet = 1. Thus, we obtain that χL is trivial. But since, as remarked above, the order of
χL is equal to m′, we thus obtain that m′ = 1, which is absurd.

Thus, we conclude that the hypothesis that ν is generically zero implies that we are
in “Case II” (cf. [HAT], Chapter V, §4); that d is even; and that m′ = 2. I claim that
d · η lies in G. Indeed, this follows from the fact that the portion of χM which governs
the “étale portion” of d · η (i.e., the connected component of the special fiber of E∞,S in
which d · η lies), namely, χM|μ

n
, is trivial (since we are in “Case II”). Thus, the image

in the special of E∞,S of the point d · η lies in the connected component of the identity,
so d · η ∈ G (recall that we have assumed in this discussion that G is “of multiplicative
type”!), as claimed. This completes the proof of the assertion that if ν is generically zero,
then our data is of null type.

Thus, it remains to show that: if our data is of null type, then ν is generically zero.
But this follows immediately from substitution into the explicit expression for Θμ given
above (i.e., one uses the fact that χ(−) of any odd multiple of d is equal to −1 to show
that the coefficient of (U |μ

d
)

d
2 vanishes). This completes the proof of Proposition 6.2. ©

§7. Some Elementary Computational Lemmas

In the following discussion, we assume that we are given a finite collection

p1, p2, . . . , pr

(where r ≥ 1) of (distinct) prime numbers, together with a collection of positive integers
e1, e2, . . . , er. Write
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d
def= pe11 · pe22 · . . . · per

r

If A ⊆ {1, 2, . . . , r} is a nonempty subset, let us write

F(A)

for the set of functions ψ : A → Z (whose value at j ∈ A we write ψj) such that for each
j ∈ A, we have 1 ≤ ψj ≤ ej .

Lemma 7.1. We have:

d− 1 =
∑

A⊆{1,...,r}

{ ∑
ψ∈F(A)

{(
∏
j∈A

p
2ψj

j ) − 1}·
(
∏
j /∈A pj)

{∏r
j=1 (pj + 1)}

·
( ∏
j∈A

p
−ψj

j · (pj − 1 + δψj ,ej )
)}

where δx,y is 1 if x = y and 0 otherwise.

Proof. It is immediate that it is equivalent to verify:

(pe11 · . . . · per
r − 1) ·

r∏
j=1

(pj + 1) =

∑
∅�=A⊆{1,...,r}

(
∏
j /∈A

pj) ·
{ ∑
ψ∈F(A)

{(
∏
j∈A

p
2ψj

j ) − 1} ·
( ∏
j∈A

p
−ψj

j · (pj − 1 + δψj ,ej )
)}

Let us first fix A, and consider the sum over ψ ∈ F(A). This sum may be thought of as
consisting of two sums, corresponding to the two terms “

∏
j∈A p

2ψj

j ” and “−1.” The first
sum may be evaluated as follows:

∑
ψ∈F(A)

{
∏
j∈A

p
2ψj

j } ·
( ∏
j∈A

p
−ψj

j · (pj − 1 + δψj ,ej )
)

=
∑

ψ∈F(A)

( ∏
j∈A

p
ψj

j · (pj − 1 + δψj ,ej )
)

=
∏
j∈A

{ ej∑
ψj=1

p
ψj

j · (pj − 1 + δψj ,ej)
}

=
∏
j∈A

{
pj(pj − 1) ·

(pej−1
j − 1)
(pj − 1)

+ p
ej+1
j

}

=
∏
j∈A

{
p
ej

j − pj + p
ej+1
j

}
=

∏
j∈A

Ψj
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where we write Ψj
def= p

ej

j − pj + p
ej+1
j . On the other hand,

−
{ ∑
ψ∈F(A)

( ∏
j∈A

p
−ψj

j · (pj − 1 + δψj ,ej )
)}

= −
∏
j∈A

{ ej∑
ψj=1

p
−ψj

j · (pj − 1 + δψj ,ej )
}

= −
∏
j∈A

{
p−1
j · (pj − 1) ·

(1 − p
−ej+1
j )

(1 − p−1
j )

+ p
−ej+1
j

}

= −
∏
j∈A

{
(1 − p

−ej+1
j ) + p

−ej+1
j

}
= −1

Thus, in summary, it suffices to show that:

(pe11 · . . . · per
r − 1) ·

r∏
j=1

(pj + 1) =
∑

∅�=A⊆{1,...,r}
(
∏
j /∈A

pj) ·
{( ∏

j∈A
Ψj

)
− 1

}

To do this, we use induction on r. The result is clear for r = 1. Thus, let us prove it
for r ≥ 2, assuming the result known for strictly smaller r. First, let us note that the
above sum over A �= ∅ may be split into three sums: the first (respectively, second; third)
corresponding to the case where A = {1} (respectively, 1 ∈ A (but A �= {1}); 1 /∈ A).
Note that there is a natural bijective correspondence between the second and third types
of A given by appending/deleting the element “1.” Thus, we obtain:

∑
∅�=A⊆{1,...,r}

(
∏
j /∈A

pj) ·
{( ∏

j∈A
Ψj

)
− 1

}

= −
{ ∑

∅�=A⊆{1,...,r}
(
∏
j /∈A

pj)
}

+
∑

∅�=A⊆{1,...,r}
(
∏
j /∈A

pj) ·
{ ∏
j∈A

Ψj

}

= −
{ ∑

∅�=A⊆{1,...,r}
(
∏
j /∈A

pj)
}

+ (
r∏
j=2

pj) ·Ψ1

+
∑

1∈A⊆{1,...,r}, |A|≥2

(
∏
j /∈A

pj) ·
{ ∏
j∈A

Ψj

}
+

∑
∅�=A′⊆{2,...,r}

(
∏
j /∈A′

pj) ·
{ ∏
j∈A′

Ψj

}
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= −
{ ∑

∅�=A⊆{1,...,r}
(
∏
j /∈A

pj)
}
− (

r∏
j=1

pj) + (
r∏
j=2

pj) · pe11 · (p1 + 1)

+
∑

∅�=A′⊆{2,...,r}
(

∏
1 �=j /∈A′

pj) · (Ψ1 + p1) ·
{ ∏
j∈A′

Ψj

}

= −
{ ∑

A⊆{1,...,r}
(
∏
j /∈A

pj)
}

+ (
r∏
j=2

pj) · pe11 · (p1 + 1)

+ (p1 + 1) · pe11 ·
∑

∅�=A′⊆{2,...,r}
(

∏
1 �=j /∈A′

pj) ·
{ ∏
j∈A′

Ψj

}

= −
{ r∏
j=1

(pj + 1)
}

+ (
r∏
j=2

pj) · pe11 · (p1 + 1)

+ (p1 + 1) · pe11 ·
∑

∅�=A′⊆{2,...,r}
(

∏
1 �=j /∈A′

pj) ·
{ ∏
j∈A′

Ψj

}

Next, let us write

d′
def= pe22 · . . . · per

r

so d = pe11 · d′. Then we have

(d − 1) ·
r∏
j=1

(pj + 1) = (d− pe11 + pe11 − 1) ·
r∏
j=1

(pj + 1)

= pe11 (d′ − 1) ·
r∏
j=1

(pj + 1) + (pe11 − 1) ·
r∏
j=1

(pj + 1)

Thus, by dividing by (p1 + 1), we see that it suffices to show that:

(pe11 − 1) ·
r∏
j=2

(pj + 1) + pe11 (d′ − 1) ·
r∏
j=2

(pj + 1)

= −
{ r∏
j=2

(pj + 1)
}

+ pe11 · (
r∏
j=2

pj) + pe11 ·
∑

∅�=A′⊆{2,...,r}
(

∏
1 �=j /∈A′

pj) ·
{ ∏
j∈A′

Ψj

}

But by the induction hypothesis on r, we have
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−
{ r∏
j=2

(pj + 1)
}

+ pe11 · (
r∏
j=2

pj) + pe11 ·
∑

∅�=A′⊆{2,...,r}
(

∏
1 �=j /∈A′

pj) ·
{ ∏
j∈A′

Ψj

}

= −
{ r∏
j=2

(pj + 1)
}

+ pe11 · (
r∏
j=2

pj) + pe11 ·
∑

∅�=A′⊆{2,...,r}
(

∏
1 �=j /∈A′

pj)

+ pe11 · (d′ − 1) ·
{ r∏
j=2

(pj + 1)
}

= −
{ r∏
j=2

(pj + 1)
}

+ pe11 ·
{ r∏
j=2

(pj + 1)
}

+ pe11 · (d′ − 1) ·
{ r∏
j=2

(pj + 1)
}

= (pe11 − 1) ·
{ r∏
j=2

(pj + 1)
}

+ pe11 · (d′ − 1) ·
{ r∏
j=2

(pj + 1)
}

as desired. This completes the proof of Lemma 7.1. ©

Next, we shift gears and write S1 for the unit circle R/Z, equipped with the standard
coordinate θ (arising from the standard coordinate on R). Write

f : S1 → R

for the unique continuous, piecewise linear function on S1 which is linear except at θ = 0, 1
2
,

and satisfies:

f(0) = +1; f(
1
2
) = −1

Note that f satisfies the property:

f(θ +
1
2
) = −f(θ)

and that df
dθ

= −4 for θ ∈ [0, 1
2
] and df

dθ
= 4 for θ ∈ [ 1

2
, 1].

Next, let us define, for N a positive integer:

Φ(N) def= N ·
N−1∑
i=0

f(
i

N
) ∈ R

and (by induction on N , starting with Φexact(1) def= Φ(1))
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Φexact(N) def= Φ(N) −
∑

a|N, a<N
Φexact(a)

where in the sum, a ranges over all positive integers < N which divide N . In the following,
we would like to compute Φ(N) and Φexact(N) explicitly.

Lemma 7.2. If N is an odd positive integer, then Φ(N) = 1. If N is an even positive
integer, then Φ(N) = 0.

Proof. First, assume that N is odd. Write

(S1)′ def= S1/(
1
N

Z/Z)

for the quotient of S1 by the subgroup 1
NZ/Z ⊆ S1. Thus, (S1)′ is also naturally isomor-

phic to a copy of S1. Write θ′ for the standard coordinate on (S1)′. Thus, θ′ = N · θ.
Let

g(θ′) def=
N−1∑
i=0

f(θ +
i

N
)

for the “push-forward” of f to (S1)′. (Thus, g : (S1)′ → R.) Note that g is itself continuous
and piecewise linear on (S1)′. Moreover,

∫
S1

f =
∫

(S1)′
g = 0

Finally, the derivative of g for “generic” (i.e., all but finitely many exceptional values) θ′

may be computed as follows:

N · dg
dθ′

(θ′) =
dg

dθ
(θ′) =

N−1∑
i=0

(
df

dθ
)(θ +

i

N
)

= 4 ·
N−1∑
i=0

χ[ 12 ,1]
(θ +

i

N
) − χ[0, 12 ](θ +

i

N
)

= 4 · {χ[ 12 ,1]
(θ′) − χ[0, 12 ](θ

′)}

where (for an interval [a, b] ⊆ R) χ[a,b] denotes the indicator function on this interval (i.e.,
it is = 1 on [a, b] and = 0 outside of [a, b]), and, in the final equality, we make essential use
of the fact that N is odd.
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But note that these properties imply that N · g on (S1)′ “looks just like” f on S1.
Thus, in particular, it follows that

Φ(N) = N · g(0) = f(0) = 1

as desired.

Now assume that N is even. Then observe that Φ(N) is defined as (essentially) the
sum of the values of the function f over a certain finite set of points of S1. Moreover,
since N is even, it follows that this set is invariant with respect to the automorphism of
S1 given by θ �→ θ + 1

2 . Since f(θ + 1
2 ) = −f(θ), we thus obtain Φ(N) = 0, as desired. ©

Lemma 7.3. We have: Φexact(1) = 1, Φexact(2) = −1. Moreover, if N is any positive
integer �= 1, 2, then Φexact(N) = 0.

Proof. By definition Φexact(1) = Φ(1) = 1, and Φexact(2) = Φ(2) − Φ(1) = 0 − 1 (by
Lemma 7.2). The final assertion is proven by induction on N . This assertion is vacuous
for N = 1, 2. Thus, assume that N ≥ 3, and that the assertion in question is known for
strictly smaller N .

We begin with the case of N odd. In this case, 2 does not divide N , so, by the
induction hypothesis, we obtain (from the definition of Φexact(N)):

Φexact(N) = Φ(N) − Φ(1) = 1 − 1 = 0

(by Lemma 7.2). This completes the case when N is odd.

Now assume that N is even. In this case, for all a as in the sum appearing in the
definition of Φexact(N), we have Φexact(a) = 0, unless a = 1, 2. Moreover, in this case,
a = 1, 2 both appear, so we get:

Φexact(N) = Φ(N) − {Φexact(1) + Φexact(2)} = 0 − {1 − 1} = 0

(by Lemma 7.2), as desired. ©

§8. The Various Contributions at Infinity

In this §, we piece together the results of §5, 6, and 7, to obtain the main result of
this paper concerning degrees. This result concerning degrees is the main technical result
underlying the theory of this paper. In particular, the theorems of §9, 10, below, will
essentially be formal consequences of this result concerning degrees.
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The main point is that the various computations performed in §5, 6, and 7 are sufficient
to compute the total degree of vanishing of the norm ν of §3, as follows. In this §, we use
the notation of the latter part of §3 (i.e., we assume that S is a curve in characteristic 0).
As usual, degrees will always be expressed in log(q) units. The total degree of vanishing of
ν will be a weighted sum/average over all the possibilities for H (the Lagrangian subgroup)
and G (the restriction subgroup). In the following discussion, we shall write (cf. §7)

d
def= pe11 · pe22 · . . . · per

r

(where p1, . . . , pr are distinct prime numbers; and e1, . . . , er are positive integers).

First, let us observe that the estimate (from below) for deg(ν) in Theorem 5.1 (as a
function of G, H) depends only on heff . For a given G, H, we shall refer to the primes
that divide heff = |ImE∞μ,S (Get)

⋂
μ

μ
d | (cf. Theorem 5.1) as active primes. Thus, the set

of active primes forms a subset

A ⊆ {1, . . . , r}

For each active prime pj , the pj-primary part of the resulting heff (cf. §5) is equal to some
p
ψj

j . Thus, we obtain a function

ψ : A → Z

given by j �→ ψj , and (by definition) we have:

heff =
∏
j∈A

p
ψj

j

Next, let us observe that the probability that, at a given point at infinity, the pj-
primary part of heff has order pψj

j for all j ∈ A, and order 1 for all j /∈ A, is given
by:

{ ∏
j∈A

(pj − 1 + δψj ,ej

(pj + 1)pψj

j

)}
·
{ ∏
j /∈A

( pj
pj + 1

)}

Indeed, clearly what happens for one pj is independent of what happens for the other
pj ’s. Thus, the probability in question is equal to the product of the probabilities for each
individual pj . On the other hand, to compute the probability for a given pj , we make use
of the following lemma (where we think of “M” as the module of d-torsion points in the
Tate curve; “(Z/peZ) ⊕ 0” as the submodule defined by “μ

p
ej
j

”; “N” as the submodule

defined by the restriction subgroup G; “p” as pj ; “e” as ej ; and “e′” as ψj):
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Lemma 8.1. Let p be a prime number, and e, e′ positive integers such that e′ ≤ e.
Write M def= (Z/peZ) ⊕ (Z/peZ). Then the fraction of rank one free Z/peZ-submodules
N ⊆ M which are equal to the module (Z/peZ) ⊕ 0 modulo pe

′
but not modulo pe

′+1 (if
e′ < e) is given by:

p− 1 + δe′,e
(p+ 1)pe′

On the other hand, the fraction of rank one free Z/peZ-submodules N ⊆ M which are not
equal to the module (Z/peZ) ⊕ 0 modulo p is given by p

p+1 .

Proof. Indeed, the computation of the second fraction is immediate, so let us concentrate
on the computation of the first fraction. First of all, the fraction of rank one free Z/peZ-
submodules N ⊆ M which are equal to the module (Z/peZ) ⊕ 0 modulo p is given by

1
p+ 1

Such N admit a unique generator of the form γ = (1, aγ ), where aγ ∈ pZ/peZ. Thus, the
first fraction in the statement of Lemma 8.1 is equal to 1

p+1 times the fraction of aγ which

are ≡ 0 modulo pe
′
but not modulo pe

′+1 (if e′ < e). The fraction of such aγ is given by:

|pe′Z/peZ| − |pe′+1Z/peZ|
|pZ/peZ| =

pe−e
′ − pe−e

′−1

pe−1

=
pe−e

′
(1 − p−1)
pe−1

=
p−e

′
(1 − p−1)
p−1

= p−e
′
(p− 1)

if e′ < e, and

|pe′Z/peZ|
|pZ/peZ| =

pe−e
′

pe−1
= p1−e′

if e′ = e. Thus, multiplying by 1
p+1 gives the desired result. ©

Now let us recall the estimate (for a fixed G, H) of Theorem 5.1:

Avgη(deg(ν)) ≥ (d/heff) · Z ′(d, heff ,m
′)

On the other hand, Z ′(d, heff ,m
′) has been computed in Proposition 3.3. Note, moreover,

that by Lemma 7.3, the “φ1(−)” term in the expressions of Proposition 3.3 vanishes if
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d is odd or m′ �= 2. (Indeed, up to a nonzero factor, one computes that the differences
φ1(θ + 1

2 ) − φ1(θ) are equal (as functions on S1) to the function “f” studied in the latter
portion of §7. Thus, the asserted vanishing follows from the equality Φexact(m′) = 0 proven
in Lemma 7.3.) Thus, in the following, we shall assume first that either d is odd, or (if d
is even, then) m′ �= 2. We will return later to the exceptional case where d is even and
m′ = 2.

Thus, under the present assumptions on d and m′, we obtain (by Proposition 3.3):

(d/heff) · Z ′(d, heff ,m
′) =

1
24

((heff)2 − 1)

(where we omit the “log(q)” since we will always work in log(q) units). Thus, substituting
the expression for heff given above, and then taking the weighted sum (relative to the
probabilities for various types of G, H computed above), we obtain the following estimate
for the total degree of vanishing degtot(ν) of the norm ν at the various points at infinity
of S:

degtot(ν) ≥
∑

A⊆{1,...,r}

{ ∑
ψ∈F(A)

1
24

{(
∏
j∈A

p
2ψj

j ) − 1}·

{ ∏
j∈A

(pj − 1 + δψj ,ej

(pj + 1)pψj

j

)}
·
{ ∏
j /∈A

( pj
pj + 1

)}}

=
1
24

(d− 1)

= deg(M⊗d ⊗K⊗d) − d · [L · e]
= deg(M⊗d ⊗K⊗d)

where in the first equality (respectively, second; third), we apply Lemma 7.1 (respectively,
Proposition 3.2; Proposition 3.2 and the above discussion concerning φ1(−)). On the other
hand, since ν is, by definition, a section of the line bundle M⊗d ⊗ K⊗d (cf. §3), we thus
conclude that all the zeroes of ν have been accounted for in the estimates of Theorem 5.1,
i.e., that (under the assumption that d is odd or m′ �= 2):

The norm ν is invertible away from the points at infinity, and, moreover,
the inequalities of Theorem 5.1 are all equalities.

Note that we make use here of the fact that (since d is odd or m′ �= 2) ν is nonzero on a
dense open subset of S, by Proposition 6.2.

It remains to examine the case where d is even, and m′ = 2. By the theory of §6, if
our data is of null type (cf. Definition 6.1), then ν will be generically zero (cf. Proposition
6.2). Thus, we assume that our data is of general type (cf. Definition 6.1). Note that the
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estimate from below for degtot(ν) will essentially be the same as before, except that we
obtain an additional term (cf. Proposition 3.3)

−φ1(−d · ηι +
1
2
) + φ1(−d · ηι)

at those points at infinity ι where 2 is an active prime (i.e., 2 ∈ A). Note that here, since
we are not summing over all ι, but only certain special ι, it is important that we keep both
of the two terms “φ1(−)” in the above expression (i.e., it is not the same, in this case, to
just compute the sum of the −φ1(−d · ηι + 1

2 ) over the specific ι in question) — cf. the
computations of [HAT], Chapter VI, proof of Theorem 3.1, in the even case.

Next, note that the probability that 2 ∈ A is 1
2+1 = 1

3 . Moreover, at such ι, we have:
d ·ηι /∈ G (since our data is of general type). But the fact that 2 ∈ A implies that 2G = μ2,
so we thus obtain that at such ι, d · ηι = 1

2
. Thus, the net contribution to the estimate

from below for degtot(ν) is:

1
3
(−φ1(−

1
2

+
1
2
) + φ1(−

1
2
)) =

1
3
(−φ1(0) + φ1(−

1
2
)) =

1
3
(− 1

12
− 1

24
) = − 1

24

Let us refer to this contribution as the first new contribution.

On the other hand, in the present context (where d is even and m′ = 2), the degree
of the line bundle deg(M⊗d ⊗ K⊗d) is no longer equal to 1

24
(d − 1), since −d · [L · e] is

not necessarily zero (cf. Proposition 3.2). The resulting contribution of this new term —
which we shall refer to as the second new contribution — is given by:

−d · [L · e] =
∑
ι

φ1(−d · ηι +
1
2
) =

2
3
φ1(−

1
2

+
1
2
) +

1
3
φ1(0 +

1
2
)

=
2
3
φ1(0) +

1
3
φ1(

1
2
) =

2
3
· 1
12

− 1
3
· 1
24

=
1
24

where we note the following:

(1) In the first equality, since this time we are summing over all points
at infinity ι, we are free to use just the single term “φ1(−d · ηι + 1

2)”
(instead of the difference “φ1(−d · ηι + 1

2
) − φ1(−d · ηι)”).

(2) In the second equality, we use the fact that the probability that d·ηι = 1
2

(respectively, d · ηι = 0) is 2
3

(respectively, 1
3
) — cf. Lemma 8.1 in the

case p = 2.

Note, in particular, that the first and second new contributions cancel one another out in
our estimate from below for degtot(ν). Thus, by the same reasoning as in the case where
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d is odd or m′ �= 2, we conclude the following result, which is the main technical result of
this paper:

Theorem 8.2. If the given data (i.e., d, m′, and η) are of general type (cf. Definition
6.1), then the norm ν of §3 is invertible away from the points at infinity, and, moreover,
the inequalities of Theorem 5.1 are all equalities. If the given data (i.e., d, m′, and η) are
of null type (cf. Definition 6.1), then the norm ν of §3 is identically zero.

§9. The Main Theorem

So far, our discussion has mainly been in characteristic zero. In this present §, we
observe that what we have done so far extends immediately to mixed characteristic. This
observation allows us to state and prove the main theorem of this paper, concerning the
invertibility of the coefficients of the Fourier transform of an algebraic theta function in
mixed characteristic.

Our notation is as at the beginning of §3. To review (cf. §3 for more details): S log

is a Z-flat fine noetherian log scheme; C log → S log is a log elliptic curve which is smooth
over a schematically dense open subscheme of S, hence defines a “divisor at infinity” (i.e.,
the pull-back via the associated classifying morphism of the divisor at infinity of (M1,0)Z)
D ⊆ S. Moreover, we have a stack S∞ obtained from S by adjoining the roots of the
q-parameters at the locus D ⊆ S over which C log → S log degenerates, together with a
smooth group scheme f : E∞,S → S∞ (which is useful for carrying out the constructions
of [Zh]).

Let m, d be positive integers such that m does not divide d, and η ∈ E∞,S(S∞) be a
torsion point of order m. Then η defines a certain natural metrized line bundle L which
— in the notation of [HAT], Chapter V, §1 — is equal to Lst,η (respectively, Lev

st,η) if d is
odd (respectively, even). The push-forward f∗L of this metrized line bundle to S∞ defines
a metrized vector bundle on S∞, equipped with the action of a certain natural theta group
scheme GL (cf. [HAT], Chapter IV, §5).

Next, we assume that we are given finite, flat (i.e., over S∞) subgroup schemes G,H ⊆
E∞,S which are étale locally isomorphic to Z/dZ in characteristic 0 (i.e., after tensoring
with Q), and which satisfy H × G = dE∞,S ⊆ E∞,S. (where dE∞,S is the kernel of
multiplication by d on E∞,S). We shall refer to G as the restriction subgroup (since its
principal use will be as a collection of points to which we will restrict sections of L), and
H as the Lagrangian subgroup (since its primary use will be to descend L). When d is
even, we also assume that we are given splittings Gspl, Hspl of certain natural surjections
G̃ → G, H̃ → H (cf. §3 for more details). With this data, we obtain (regardless of the
parity of d) liftings G,H ⊆ GL of G,H ⊆ dE∞,S. Using H ⊆ GL, we may descend L to a

line bundle LH on E∞H ,S
def= E∞,S/H.
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We are now ready to give the first main result of this paper:

Theorem 9.1. (Invertibility of the Coefficients of the Fourier Transform of an
Algebraic Theta Function) Suppose that we are given C log → S log, m, d, η, G, Gspl,
H, and Hspl, as above. Let us regard the Fourier expansion morphism

E : (fH)∗LH → O
Ĝ
⊗OS∞ K

(where K def= L|e is the restriction of L to the identity section e of E∞,S) for the algebraic
theta functions obtained by restricting global sections of LH to G as a “section” of the
OS∞-algebra O

Ĝ
which is well-defined up to scalar multiples. If our data is of null type (a

condition on d, m, η, and G — cf. Definition 6.1), then the norm ν of E is generically
zero. If our data is of general type (a condition on d, m, η, and G — cf. Definition 6.1),
then E satisfies the following invertibility properties:

(1) E is invertible over (US)Q (where US
def= S −D; the subscripted Q denotes “⊗ZQ”).

(2) Let ι ∈ D be a point at infinity. Let

hμ
def= |H

⋂
μd|; het

def= d/hμ; heff
def= |ImE∞μ,S (Get)

⋂
μ

μ
d |; hord

def= het/heff

be the local invariants at ι defined in §5. Then in a neighborhood of ι, the endomorphisms
of the OS∞-algebra O

Ĝ
defined by multiplying by local generators of the image of E may be

written (for an appropriate basis) as diagonal matrices whose diagonal entries are of the
form

d · ε · hord
− 1

2 · ω · q 1
d ·cRem(j,heff )(Case Xι) · (a unit ≡ 1 modulo q(>0))

where ε is a 4-th root of unity (respectively,
√

2 times an 8-th root of unity) if hord is odd
(respectively, even); ω is a sum of either one or two elements of μn·hμ·hord

(in fact, in all
but one exceptional case, ω ∈ μn·hμ·hord

); the notation cj(Case Xι) is as in §3 (cf. [HAT],
Chapter V, §4, for more details); j ranges from 1 to d; and Rem(j, heff) denotes the unique
positive integer ≤ heff which is ≡ j modulo heff .

Proof. The statement of Theorem 9.1 is essentially an amalgamation of Theorems 5.2
and Theorem 8.2. Note, in (2), that the extra factor of d (relative to the expressions in
Theorem 5.2) arises from the fact that when we take Fourier expansions (i.e., apply the
operator F of §1), the coefficients of the various characters of G get multiplied by d. Also,
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we observe that although our computations in §4, 5, were in a characteristic 0 setting, the
assertions of (2) still hold, since the various bases of function spaces — i.e., in essence,
q-expansions — that were used in §4, 5, all still form bases of the corresponding mixed
characterstic spaces — cf., e.g., [HAT], Chapter IV, §2,3, where everything is done in mixed
characteristic. This completes the proof. ©

Remark. The invertibility of the coefficients of the Fourier expansion of an algebraic theta
function may be interpreted as the statement that certain modular functions are, in fact,
modular units. It would thus be interesting to consider the meaning of Theorem 9.1 from
the point of view of the theory of modular units, e.g., to see if one can write these new
modular units explicitly in terms of classical modular units such as the Siegel modular
units (cf., for instance, [KL], Chapter 4).

§10. The Theta Convolution

We maintain the notation of §9. In this §, we apply Theorem 9.1 to study a morphism
which we call the theta convolution. This morphism is (essentially) the endomorphism of
the space of functions on the restriction subgroup G given by convoluting with the algebraic
theta function in question. In particular, we observe that the theory of the present paper
implies that this theta convolution satisfies certain compatibility properties relative to the
evaluation morphism studied in [HAT].

In this §, let us write

ΘCV : M−1 ⊗OG → OG ⊗K

(where all tensor products are over OS∞ ; M def= {(fH )∗LH}−1; K def= L|e; e ∈ E∞,S(S∞)
is the identity section) for the morphism defined as follows: First, recall that restricting
sections of LH to G defines a morphism

M−1 → L|G ∼= OG ⊗K

On the other hand, the convolution operator ∗ (cf. §1) defines a morphism

OG ⊗OG → OG

Thus, if we compose this convolution morphism (tensored with K) with the restriction
morphism M−1 → OG ⊗K (tensored with OG), we get a morphism ΘCV as above. This
morphism will be referred to as the theta convolution.

By Proposition 1.1, (iii.), and Theorem 9.1, (1), it follows that ΘCV is invertible over
(US)Q. Since ΘCV is generically invertible, we thus obtain that the image of ΘCV in
OG ⊗K ∼= L|G, which we denote by
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L|ΘG ⊆ L|G

is a metrized vector bundle on S∞ which satisfies

L|ΘG ∼= M−1 ⊗OG

Note, moreover, that the inclusion L|ΘG ⊆ L|G is an isomorphism over (US)Q.

On the other hand, let us recall the object

E
†
∞,[d]

of [HAT], Chapter V, §2. Over (US)Q, this object is isomorphic to the universal extension
of the elliptic curve E|(US)Q → (US)Q under consideration. Thus, in general, one may

think of E†
∞,[d] as a certain extension of this universal extension over the divisor at infinity

and the points of positive characteristic. Let us write

f∗(L|
E
†
∞,[d]

)<d{et}

for the push-forward consisting of sections of L over E†
∞,[d] whose torsorial degree (i.e.,

relative degree for the morphism E
†
∞,[d] → E∞,S) is < d, equipped with the étale-integral

structure (cf. [HAT], Chapter V, §3) at the finite primes. Note that this push-forward
forms a metrized vector bundle on S∞ of rank d2. Since we are given a subgroup scheme
H ∼= H ⊆ GL, we thus obtain a natural action of H on this push-forward. Let us denote
by

f∗(L|
E
†
∞,[d]

)<d{et}H

the metrized vector bundle on S∞ of rank d consisting of sections that are fixed by H.
Then it follows from [HAT], Chapter VI, Theorem 3.1, (1), (2), that we have a natural
evaluation map

ΞG : f∗(L|
E
†
∞,[d]

)<d{et}H → L|G

which is an isomorphism over (US)Q.

Now we have the following important application of the theory of this paper (our second
main result):

48



Theorem 10.1. (The Theta-Convoluted Scheme-Theoretic Comparison Iso-
morphism) Suppose that we are in the situation of Theorem 9.1. Let us denote by

ΞG : f∗(L|
E
†
∞,[d]

)<d{et}H → L|G

the evaluation map derived from [HAT], Chapter VI, Theorem 3.1, (1). Write C for the
product of all the prime numbers that divide d or n. Then 2d · C · ΞG factors through
L|ΘG ⊆ L|G. Moreover, the resulting morphism

ΞΘ
G : f∗(L|

E
†
∞,[d]

)<d{et}H → L|ΘG

satisfies the following properties:

(1) ΞΘ
G is invertible over (US)Q. Moreover, the poles of the inverse of ΞΘ

G over US are
annihilated by 2d · C2.

(2) There exists a natural modification of the integral structure at infinity of
f∗(L|

E
†
∞,[d]

)<d{et}H analogous to the new integral structure at infinity of [HAT], Chap-

ter VI, §1, with respect to which ΞΘ
G is both integral and invertible over SQ. (Thus, in

particular, relative to this modified integral structure, ΞΘ
G will be integral over all of S,

and invertible over S, except for poles annihilated by 2d · C2.) Moreover, just as the new
integral structure at infinity of [HAT], Chapter VI, §1, is given by allowing poles on the
F j/F j−1-portion of the push-forward of the form q−

1
d cj(Case Xι) (cf. [HAT], Chapter VI,

Theorem 3.1, (3)), in the present context, the new integral structure at infinity is given
by allowing poles on the F j/F j−1-portion of the push-forward of the form

q−
1
d {cj(Case Xι)−cRem(j,heff )(Case Xι)}

(where Rem(j, heff) is as in Theorem 9.1).

Proof. Over (US)Q, everthing is immediate. Let us prove that 2d ·C ·ΞG factors through
L|ΘG ⊆ L|G. First, observe that 2d · C is sufficient to cancel the poles of the inverse of
the expression “d · ε · hord

− 1
2 · ω” appearing in Theorem 9.1. This proves the existence of

the desired factorization over US . Thus, (by working over various appropriate finite, flat
coverings of the moduli stack (M1,0)Z) one sees that to prove the existence of the desired
factorization over S, it suffices to prove its existence at the points of DQ.

To this end, we recall from the theory of [HAT] (cf., especially, [HAT], Chapter V,
§4, Theorem 4.8; [HAT], Chapter VI, §4, proof of Theorem 4.1) that to consider the
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restriction of sections of f∗(L|
E
†
∞,[d]

)<d{et}H (as opposed to just (fH)∗LH) to G amounts

to considering the various derivatives of the theta function in question. In our case, this
essentially amounts to considering the various derivatives (U · ∂

∂U )jΘ (where Θ is as in
§4; j = 0, . . . , d − 1). If we then restrict such derivatives to G and apply the appropriate
trivializations (as discussed in §4, 5), we see that we obtain similar expressions to those
obtained in §4, 5 in the case of Θ itself. The only difference is that, in the case of the
various derivatives of Θ, the leading terms (i.e., terms involving the smallest powers of
q) as in the statement of Theorem 5.2 will be multiplied by various constant factors. The
point here, however, is that the smallest power of q for these derivatives of Θ will always be
≤ the smallest power of q that arises in the case of the original Θ. Thus, even if we divide
the Fourier coefficients of the restrictions of the derivatives of Θ by the Fourier coefficients
of the corresponding restrictions of Θ itself, the result will remain integral. This implies
the existence of the factorization stated in Theorem 10.1.

Next, we consider the invertibility of ΞΘ
G over US . The fact that the the poles of the

inverse of ΞΘ
G over US are annihilated by 2d · C2 follows formally from the fact that the

poles of the inverse of ΞG are annihilated by C (cf. [HAT], Chapter VI, Theorem 4.1, (2)),
together with the fact that 2d ·C ·ΞG is (by definition) the composite of ΞΘ

G with another
morphism.

Finally, we consider the invertibility of ΞΘ
G at the points of DQ. The argument is

essentially the same as in the proof above of the existence of the factorization ΞΘ
G. Indeed,

just as in the situation of [HAT] (cf., especially, [HAT], Chapter V, Theorem 4.8; [HAT],
Chapter VI, Theorem 4.1, (3)), a collection of local generators for the new integral structure
is given by the

q−
1
d cj(Case Xι) · ζCG

j−1

(for j = 1, . . . , d), in the present context, a collection of local generators for the new integral
structure is given by the

q−
1
d{cj(Case Xι)−cRem(j,heff )(Case Xι)} · ζCG

j−1

(for j = 1, . . . , d). That is to say, the “work done by dividing by q
1
d cj(Case Xι)” is

partially absorbed by the inverse of the theta convolution, which results in division by
q

1
d cRem(j,heff )

(Case Xι) (cf. the theory of §4, 5; Theorem 9.1). Thus, in the present “theta-
convoluted case,” the desired integral structure at infinity is obtained by dividing by
“what’s left.” This completes the proof of Theorem 10.1. ©

Remark 1. In particular, we obtain that at points at infinity ι where heff = d — i.e.,
when the restriction subgroup G is of multiplicative type — no modification of the integral
structure at infinity is necessary. Put another way, at such ι:
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The “Gaussian poles” of the “comparison isomorphism” defined by the
theta-convoluted evaluation map ΞΘ

G vanish.

(cf. the discussion of [HAT], Introduction, §5.1). It is this fact/observation that formed
the fundamental motivation for the author to develop the theory of the present paper.

Remark 2. Just as in [HAT], Chapter IX, §3, we constructed an “arithmetic Kodaira-
Spencer morphism” from the “Hodge-Arakelov Comparison Isomorphism” ([HAT], Chap-
ter VIII, Theorem A) of [HAT], one can now construct a theta-convoluted arithmetic
Kodaira-Spencer morphism from the theta-convoluted comparison isomorphism of Theorem
10.1. The procedure is entirely formally analogous to what was done in [HAT], Chapter
IX, §3, i.e., one simply transports the natural Galois action on the “étale side” (i.e., the
right-hand side) of the comparison isomorphism to the “de Rham-theoretic side” (i.e., the
left-hand side) of the comparison isomorphism, and considers the extent to which this
Galois action preserves the Hodge filtration. We leave the entirely routine details to the
reader. Note that the key technical point here is that:

The range of the theta-convoluted comparison isomorphism, i.e.,

L|ΘG ∼= M−1 ⊗OG

admits a natural Galois action (arising from the Galois action on G).

Moreover, we would like to emphasize — relative to the context of the theory of [HAT]
(cf., especially, the discussion at the end of [HAT], Chapter IX, §3) — that:

The construction of an arithmetic Kodaira-Spencer morphism in which
the Gaussian poles have been at least partially eliminated brings us one
step closer to the possibility of applying the theory of [HAT] and the
present paper to diophantine geometry, as discussed in [HAT], Introduc-
tion, §5.1, and [HAT], Chapter IX, §3.

Remark 3. Of course, in order to complete the analogy with the theory of [HAT], one
must also study the properties of the theta convolution at archimedean primes. Just as
in the theory of [HAT], by pulling back the natural metric on the étale side of the theta-
convoluted comparison isomorphism one obtains an étale metric on the de Rham side of
the theta-convoluted comparison isomorphism. The theta-convoluted arithmetic Kodaira-
Spencer morphism of Remark 2 will have natural integrality properties with respect to this
étale metric. Of course, in order to make use of this machinery, one would like to have more
explicit information about the étale metric, in particular, concerning the metrics induced
by the étale metric on the various subquotients of the Hodge filtration (on the de Rham side
of the theta-convoluted comparison isomorphism). For the Hodge-Arakelov Comparison
Isomorphism of [HAT], this sort of computation was carried out in [HAT], Chapters VII
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and VIII. It is not difficult to compute what happens to the “Hermite, Legendre, and
Binomial Models” of the theory of [HAT] when one introduces the theta-convolution. It is
the hope of the author to give an explicit exposition of this computation in a future paper.
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